首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, single crystalline copper nanowires (CuNWs) have been electrochemically grown through anodic aluminum oxide template. The environmental stability of the as‐obtained CuNWs in both 40% relative humidity (RH) atmosphere and 0.1 m NaOH aqueous solution has been subsequently studied. In 40% RH atmosphere, a uniform compact Cu2O layer is formed as a function of exposure time following the logarithmic law and epitaxially covers the CuNW surfaces. It is also found that the oxide layers on CuNWs are sequentially grown when subjected to the cyclic voltammetry measurement in 0.1 m NaOH solution. An epitaxially homogeneous Cu2O layer is initially formed over the surface of the CuNW substrates by solid‐state reaction (SSR). Subsequently, the conversion of Cu2O into epitaxial CuO based on the SSR takes place with the increase of applied potential. This CuO layer is partially dissolved in the solution forming Cu(OH)2, which then redeposited on the CuNW surfaces (i.e., dissolution‐redeposition (DR) process) giving rise to a mixed polycrystalline CuO/Cu(OH)2 layer. The further increase of applied potential allows the complete oxidation of Cu2O into CuO to form a dual‐layer structure (i.e., CuO inner layer and Cu(OH)2 outer layer) with random orientations through an enhanced DR process.  相似文献   

2.
Fabrication of low‐dimensional nano‐MOFs as well as nanoparticles/metal‐organic frameworks (MOFs) hybrids has sparked new scientific interests but remains a challenging task. Taking Cu3(BTC)2 as a proof of concept, it is demonstrated thats NH3?H2O solution of a confined pH value can readily shape the bulk Cu3(BTC)2 into nanoscale Cu3(BTC)2, beyond the need to control the crystal growth kinetics of MOFs. Adjusting the pH of NH3?H2O within a much small range (10–11) allows fine tuning over the size and shape of nanoscale Cu3(BTC)2. Particularly at pH = 11, NH3?H2O exhibits weak reducibility that triggers a reduction of part of Cu3(BTC)2 into Cu2O, while shaping the other into Cu3(BTC)2 nanowires. Benefiting from the coincidence of reduction and etching effects, the newly generated Cu2O dots can in situ anchor onto adjacent Cu3(BTC)2 nanowires at highly dispersive state, forming a well‐defined sponge‐like architecture built of Cu2O dots and nano‐Cu3(BTC)2. The CuOx derived from annealing of the Cu2O dots/nano‐Cu3(BTC)2 hybrid preserves the sophisticated sponge architecture and high porosity, and exhibits promising applications in phenol scavenging, with efficiency outperforming its counterparts and many other Cu‐based catalysts reported in literature. It is anticipated that the findings here pave the way for the rational design of intricate nano‐MOFs in a more efficient way.  相似文献   

3.
The electrodeposition of cuprous oxide (Cu2O) onto FTO-coated glass substrate was studied by using a statistical approach in order to control the Cu2O morphology and optical properties. The factorial design considered four electrodeposition conditions at two representative levels as input variables (electrolyte temperature and pH, deposition potential and duration) and the deposition charge and morphology of obtained Cu2O as the output variables. The morphology analysis showed the highest influence on crystal shape was exhibited by electrolyte temperature and pH, reaching significance levels of 95 and 98%, respectively. Temperature as low as 35°C and pH 12.2 results in cubic morphology, while other parameters result in octahedron shape. The highest absorbance was exhibited by the Cu2O with cubic morphology.  相似文献   

4.
Cu nanowire arrays were synthesized via a porous alumina membrane (PAM) template with a high aspect ratio, uniform pore size (120–140 nm), and ordered pore arrangement. The Cu2O nanowire arrays were prepared from the oxidization of Cu metal nanowire arrays. The electrochemical deposition potential of Cu metal nanowires (?180 mV vs. SCE) was determined from X-ray diffraction (XRD) patterns. The microstructure and chemical composition of Cu nanowire arrays were characterized using field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM), and X-ray diffraction (XRD). Results indicate that the Cu/Cu2O nanowire arrays assembled into the nanochannel of the porous alumina template with diameters of 120–140 nm. The valence of copper was controlled by the porous alumina template during the annealing process. Copper nanowires transformed to the Cu2O phase with the space limitation of the PAM template. Single-crystal Cu2O nanowire arrays were also obtained under the template embedded.  相似文献   

5.
The processes underlying the chemical and anodic oxidation of the surface of copper foil have been studied by X-ray diffraction, scanning electron microscopy, and Raman spectroscopy. It has been shown that, in the case of anodic oxidation, at a given process duration (τ) the composition and density of initially forming Cu(OH)2 films depend not only on the current density (ja) but also on whether or not the electrolyte is stirred. A Cu2O film with an optimal, coral-like structure has been produced by the anodic oxidation of copper foil for τ = 10 min at ja = 5 mA/cm2 without stirring, followed by the thermal reduction of the Cu(OH)2 in a nitrogen atmosphere for 1 h at 500°C. In the case of the chemical oxidation of the copper foil surface, similar Cu2O films with a coral-like structure can also be produced by the thermal reduction of initially forming Cu(OH)2 at 500°C for 1 h.  相似文献   

6.
Cu/Cu2O/SnO2 composites were successfully prepared with a facile microwave synthesis method. The structure of Cu/Cu2O/SnO2 composite was studied by morphology characterizations, such as X-ray diffraction, transmission electron microscopy and high-resolution transmission electron microscopy, which showed that the size of the Cu/Cu2O/SnO2 particles is 20–50 nm. The synthesis mechanism revealed that SnCl4 obstructed between Cu(OH) and ethylene glycol, preventing Cu(OH) being reduced into Cu at high temperature. The photocatalytic property of Cu/Cu2O/SnO2 composite was investigated by degrading the mixed dyestuff under the irradiation of visible light at room temperature. Benefiting from the effect of electron transfer, the photocatalytic performance of the microwave-prepared Cu/Cu2O/SnO2 composite was much better than that of pure Cu2O. The possible photocatalytic mechanism of the Cu/Cu2O/SnO2 composite catalysts was proposed and elaborated in this study. This synthesis of Cu/Cu2O/SnO2 composite may provide a method for other Cu2O/semiconductor composites microwave preparation.  相似文献   

7.
A series of unique nanowire superstructures, Cu2O nanowire polyhedra, have been synthesized through a cost-effective hydrothermal route. Three types of nanowire polyhedra, namely octahedra, concave octahedra, and hexapods, were formed in high morphological yields (90%) by reducing cupric acetate with o-anisidine or o-phenetidine in the presence of carboxylic acids. The architectures of these Cu2O nanowire polyhedra were examined by electron microscopy, which revealed ordered, highly aligned Cu2O nanowires within the polyhedral outlines. The growth of the Cu2O nanowire polyhedra is controlled by the orientation and growth rates of the nanowire branches which are adjusted by addition of carboxylic acids. Compared to the Cu2O samples reported in the recent literature, the Cu2O nanowire octahedra exhibit notably enhanced photocatalytic activities for dye degradation in the presence of H2O2 under visible light, probably due to the high-density charge carriers photoexcited from the branched nanowires with their special structures. Additionally, the discussion in the recent literature of the photocatalytic activity of Cu2O in the absence of H2O2 for direct photodegradation of dyes seems questionable.  相似文献   

8.
Cu(OH)2 nanowires have been synthesized by an ultrasound assisted solution route in absence of a template, using Cu7Cl4(OH)10·H2O as a precursor. Hierarchical CuO nanowires were obtained by a simple solid-state thermal transformation of these Cu(OH)2 nanowires. The products were characterized by XRD, SEM, TEM and HRTEM. The ranges of diameters and lengths of the polycrystalline CuO nanowires are ca. 20-30 nm and several micrometers, respectively. Ultrasonic time is found an important factor to morphology of the CuO products. This could be a potential efficient way for large scale fabrication of CuO nanowires with hierarchical structures. Surface photovoltage spectra of the CuO nanowires in air, NH3 and CH2Cl2 atmospheres were investigated, which demonstrates it a good photoelectric gas sensing material.  相似文献   

9.
《Materials Letters》2006,60(17-18):2069-2072
Using the porous alumina film as a template, the arrays of Co and Co-P with different shapes have been fabricated by AC electrodeposition. The as-obtained samples have been characterized by AFM, TEM and EDS. The results indicate that a small amount of non-metallic phosphor added in the electrolyte has a notable influence on the morphologies of electrodeposited nanostructural materials. An array of pure cobalt nanowires can be obtained, however, a mixed array of Co-P nanowires and nanotubes doped 2.0 at.% phosphor can be produced when the electrolytic solution contains 5.0 g/L sodium hypophosphite (NaH2PO2–H2O) during the process of electrodeposition. Furthermore, only a Co-P nanoparticle array can be synthesized when the sodium hypophosphite (NaH2PO2–H2O,) was raised to 10.0 g/L in the electrolytic solution. Also, the Co and Co-P nanowires, nanotubes and nanoparticles obtained display identical amorphous structure.  相似文献   

10.
在酸性条件下采用高能球磨法制备 Cu2O纳米粉末   总被引:2,自引:0,他引:2  
采用行星球磨机在pH=2的稀盐酸溶液中对Cu粉进行球磨,球磨机简体和磨球材质均为纯Cu,球料比为20:1,球磨机转速为300r/min,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等对球磨产物进行了表征.XRD结果表明,球磨3h后,所加入的纯Cu粉末基本转化为Cu20粉末.球磨70h后得到纯的Cu20粉末,粉末粒度为50-100nm.并对Cu20纳米粉末的生成机制及球磨工艺参数对Cu20形成的影响进行了讨论.  相似文献   

11.
The effect of process conditions on the composition and structure of anodic Cu2O films grown in sulfate-chloride electrolytes has been studied using Auger electron spectroscopy, x-ray diffraction, and atomic force microscopy. The results demonstrate that the copper and oxygen depth profiles in the anodic copper(I) oxide films (ACOFs) are similar in shape. The copper content near the surface is only slightly lower than the bulk copper content. Starting at a depth of 9 nm, the Cu content is constant at an average of 62.7 at %. The Cu2O films grown at a current density j = 3 mA/cm2 have the most perfect stoichiometry, with deviations only in the surface layer. Anodic oxidation produces unoriented polycrystalline films of complex composition. In addition to Cu2O, the films contain CuCl and trace levels of copper. Raising the anode current density influences, for the most part, the formation of (111)-oriented crystallites, changing their orientation from (111) to (220). We assume that nonmetal (oxygen or chlorine) atoms are incorporated into the cubic structure of copper without changing its symmetry but increasing its unit-cell parameter: from 0.3607 (Cu) to 0.426 (Cu2O) and to 0.541 nm (CuCl).  相似文献   

12.
In this paper, plasmonic Ag and Cu nanoparticles were co-deposited on TiO2 nanoring/nanotube arrays (TiO2 R/T) by using two-step pulse electrodeposition method for investigating the optical and photoelectrochemical properties, in comparison to monometallic Ag, Cu decoration. By optimizing the electrodeposition cycle times and electrolyte concentration, bimetallic Ag–Cu/TiO2 R/T-0.5 with moderate densities and sizes of Ag and Cu nanoparticles was fabricated and shows great photocatalytic potential, in which, Ag mainly facilitates the generation of hot electrons by absorbing visible light and Cu plays an important role in accelerating the separation and transportation of hot electrons. The hydrogen production rate was tested as 425 μL h?1 cm?2, which is about 1.34-fold enhanced H2 production over TiO2 R/T. Furthermore, molecular dynamics simulations were made for analyzing the interface electrostatic properties between plasmonic nanoparticles of Ag or Cu and the semiconductor TiO2. It is calculated that bimetallic Ag–Cu/TiO2/H2O system has larger interfacial Helmholtz potential than monometallic Ag/TiO2/H2O, Cu/TiO2/H2O and pure TiO2/H2O systems, accelerating the four-electron reaction occurring at the semiconductor/electrolyte interface. This research put forward a feasible and simple pulse electrodeposition method to fabricate bimetallic photoanodes for enhanced hydrogen evolution and an important analysis method of semiconductor/ metal/electrolyte interface characteristics.  相似文献   

13.
A novel ternary sepiolite/Cu2O/Cu (SCC) nanocomposite was successfully synthesized by a facile one-pot method. The Cu2O/Cu nanoparticles in the SCC nanocomposite are well dispersed on the sepiolite surface. It exhibited enhanced photocatalytic performance in the degradation of congo red (CR), remarkably superior to that of Cu2O or Cu2O/Cu nanoparticles. Elemental copper in the SCC serves as a good electron acceptor to promote the transfer of photo-generated electrons in Cu2O and suppress the recombination of the photo-generated electrons and holes of the composite. The enhanced photocatalytic efficiency is attributed to the synergistic effect of sepiolite and Cu2O/Cu. This type of SCC nanocomposites is a promising candidate as photocatalytic material for environmental protection.  相似文献   

14.
In this paper, a simple solution-based method has been applied to fabricate metal chalcogenide nanostructures. Abundant Cu2S nanowires on Cu substrates are successfully prepared through the in-situ hydrothermal reaction between sulfur powder and Cu foil. It is observed that the addition of hydrazine and cetyltrimethylammonium bromide plays an important role in the growth of Cu2S nanowires. A rolling-up mechanism of metal chalcogenide film is used to illustrate the growth of these nanostructures. UV-vis spectrum of Cu2S nanowires reveals obvious absorption below the wavelength of 900 nm. The calculated band gap of Cu2S nanowires (1.5 eV) shows obvious blue shift because of the quantum size effect.  相似文献   

15.
Highly ordered [Co 0.975Cr 0.025]0.99Cu 0.01 nanowire arrays were electrodeposited by conducting alternating current (AC) conditions from sulfate-based electrolyte into nanopores of anodic aluminum oxide (AAO) template with 37 nm pore diameter and the interpore distances of almost 50 nm. Fabricated nanowire arrays were characterized using scanning electron microscopy, alternating gradient force magnetometer, and X-ray diffraction. The results illustrated that varying frequency, wave form, and annealing procedure had influence on magnetic properties of as deposited nanowires. The nanowire arrays electrodeposited at different electrodeposition frequencies show remarkably different magnetic behaviors. Due to increasing of the electrodeposition frequency, the rate of ions for reduction was decreased. The nanowires prepared at various wave form illustrated insignificant impact on magnetic properties. X-ray diffraction patterns display that both as-deposited and annealed nanowire arrays expose the same structure. The raised value of coercivity has been determined in annealed nanowire arrays. Magnetization measurements show that the maximum value of coercivity for [Co 0.975]0.99Cu 0.01 nanowires is observed at high temperature.  相似文献   

16.
Octahedral Cu2O particles and Cu2O nanowires were synthesized by a simple solution-phase route using N2H4·H2O as reducing agent at room temperature. Amorphous carbon nanofibers were synthesized using octahedral Cu2O particles and an acetylene gas source at atmospheric pressure. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric (TG) analysis. SEM and TEM images indicated that most of the obtained octahedral Cu2O particles had an edge length of 400-700 nm. The obtained nanowires had uniform diameters of about 15 nm, and the length of the nanowires ranged from 5 to 10 μm. The XRD result revealed the amorphous feature of the nanofibers. IR spectrum revealed that the nanofibers consist of -CH, -CH2, -CC- and -CH3 groups. The concentrations of N2H4·H2O and NaOH played important roles in controlling the geometric shape of the Cu2O.  相似文献   

17.
The Cu2O particles or clusters dispersed mesoporous SiO2 composite films were prepared by a new method: First the matrix SiO2 films were prepared by sol-gel process combined with the dip-coating technique, and then they were soaked in Cu(NO3)2 solutions followed by γ-ray irradiation at room temperature and in ambient pressure. Thus prepared Cu2O/SiO2 composite films were examined by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and optical absorption spectroscopy. Compared with the pure Cu2O nanoparticles, an obvious blue shift existed in the obtained Cu2O/SiO2 composite films.  相似文献   

18.
The effect that the phase of the starting nanoseed titania (TiO2), the pH of the solvent solution, and the processing methodology employed have on the properties of the resultant TiO2 nanomaterials were explored. This led to the development of a new process to produce large-scale, phase pure, thin nanowires of TiO2 at high pH and nanosquares at low pH. Anatase, rutile, and Degussa P25TM TiO2 nanoparticle starting materials (or nanoseeds) were processed in strongly basic (10 M KOH) and strongly acidic (conc. HX, where X = Cl, Br, I) solutions using solvothermal (SOLVO) and solution precipitation (SPPT) methodologies. Under basic SOLVO conditions, the nanoseeds were converted to H2Ti2O5·H2O nanowires. The SPPT basic conditions also produced the same phased nanowires for the rutile and anatase nanoseeds, while the Degussa nanomaterial yielded mixed phased [anatase:rutile (9:1)] nanowires. The SPPT method was found to produce substantially thinner nanowires in comparison to the SOLVO route, with comparable surface areas but the strong basic media led to etching of the glassware yielding HK3Ti4O4(SiO4)3·4H2O nanorods. Hybridization of these two processing routes led to the use of NalgeneTM bottle as the reaction flask termed the hybrid (HYBR) route, yielding even thinner H2Ti2O5·H2O nanowires on a large-scale. Switching to a concentrated halide acid (HX, where X = Cl, Br, I) system, SOLVO, SPPT, and HYBR routes were investigated. The resultant TEM images revealed that the rutile starting material yielded short rods, whereas the anatase seeds formed square or faceted materials.  相似文献   

19.
An efficient photocathode consisting of reduced graphene oxide/Cu2O/Cu (rGO/Cu2O/Cu) has been successfully prepared in this work via a facile two step method, consisting of chemical oxidation of a copper foil in alkaline solution using (NH4)2S2O8 as the oxidizing agent, dipping the prepared samples in graphene oxide (GO) solution and calcination at vacuum to form a rGO layer onto Cu2O/Cu photocathode, which acts as a protective layer. The products were composed of a thin Cu2O layer topped with a thin rGO film as the protective coating. The chemical composition and rGO amount in the composite materials were easily controlled by changing the immersion time to enhance PEC performance. UV–Vis spectroscopy, Raman spectroscopy, XRD, SEM, TEM and FTIR spectroscopy were used in the optical and morphological characterization of the graphene oxide and prepared photocathodes. Distinct patches of GO film are formed on the Cu(OH)2 nanostructure surface, as shown by SEM results. Linear sweep voltammetry and chronoamperometry analysis have been applied in the photoelectrochemical characterizations in the dark and under illumination conditions. Photocurrent density provided by rGO/Cu2O/Cu photocathode ??2.54 mA cm??2 is three times greater than that of bare Cu2O/Cu photocathode ??0.82 mA cm??2 at 0 V vs. RHE under illumination. Low photostability of 42% is exhibited by bare Cu2O/Cu photocathode after 200 s irradiation whereas rGO/Cu2O/Cu photocathode shows approximately 98% of the initial photocurrent density. Therefore, a strategy has been developed in this work for the synthesis of this new photocathode using Cu2O/Cu as an effective photocathode for photoelectrochemical (PEC) water splitting.  相似文献   

20.
Xiaofei Han  Kunhee Han 《Thin solid films》2010,518(19):5363-5367
N-type doping of cuprous oxide (Cu2O) films by chlorine (Cl) during electrodeposition was reported by the authors recently. A more detailed study on the effects of doping conditions on electrical properties of Cl-doped Cu2O is presented in this paper. The resistivity of Cl-doped Cu2O is affected by doping conditions, including Cu and Cl concentrations, different Cu and Cl precursors, complexing agent concentration, solution pH, and deposition temperature. It is believed that these conditions control the amount of Cl incorporated into the Cu2O films, thus the doping level. The lowest resistivity obtained so far is 7 Ω-cm, suitable for solar cell applications. Photocurrent-potential measurements verify the n-type conductivity of Cl-doped Cu2O. Scanning electron microscopy indicates a small grain size of around 100 nm in Cl-doped Cu2O. X-ray diffraction confirms Cu2O as the only detectable phase in the film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号