首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactivity feedback coefficients have been calculated for a compact sized PWR core that utilizes carbon coated micro fuel particles instead of standard cylindrical fuel pellets with an inventive composition. A small amount of Pu-240 with 5 w/o has also been added in tristructural-isotropic (TRISO) fuel in place of U-238 for the reduction of excess reactivity. The values of fuel, moderator and void reactivity coefficients have been calculated at the middle of fuel cycle. All the reactivity coefficients were found negative which meet the design safety criteria. It was also observed that all reactivity feedback coefficients are interlinked and their effects are pronounced when coupled together.  相似文献   

2.
An innovative concept of PFPWR50 for district heating has been studied, which is a small PWR of 50MWt capability using coated particle fuels with conventional zircaloy cladding. This concept takes advantages of fuel integrity against fission products release of coated particle fuels and a high reliability of PWR technology based on the long history of a successful operation. We have investigated burnup characteristics of fuel rods, assemblies, and reactor cores by the calculation code SRAC95 in order to establish a core concept of long life without on-site refueling. The loading pattern of assemblies with various concentrations of burnable poison is optimized to obtain a flat excess reactivity during the core life in order to eliminate a soluble boron control system. The core life of a cycle is about 8.9 equivalent full power years. And we have also studied the applicability of SiC/SiC composite cladding in place of zircaloy cladding, which is now under development for gas cooled fast reactor fuels. It could be applicable to high burnup fuel rods for a long term operation. From the calculation results, it is found out that the burnup characteristics do not change significantly with SiC cladding and contribute to elongate the core life to 9.2 equivalent full power years.  相似文献   

3.
In high temperature reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this paper QUADRISO particles are proposed to manage the initial excess reactivity of high temperature reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This mechanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the initial excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, more neutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic high temperature reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.  相似文献   

4.
The reactivity control of a PWR core may be performed by a system of burnable poison (BP) rods. In such a case, the soluble B system may be eliminated and the BP rods will be responsible for the excess reactivity provided for fuel depletion and fission products accumulation. A strong negative moderator temperature coefficient is a desirable safety feature, inherent to a poison-free moderator. The design objective of a PWR core controlled completely by a system of BP rods is achieved by utilization of Gd as the poison material and annular geometry of a BP rod. The proposed concept is tested as a retrofittable option for the current generation, as well as new PWR plants. A plausible incore fuel-management scheme is demonstrated, with planar power distribution, close to an acceptable range. The fuel-cycle penalty due to the residual poison content at EOC is relatively small.  相似文献   

5.
综合论述了压水堆堆芯设计中的化学补偿反应性、标准化无盒大型燃料组件、棒束型控制棒、可燃毒物和采用多区堆芯装料等基本问题。并以上述5大问题为基础,简要叙述了负荷跟踪运行给堆芯设计带来的有关设计问题。此外,简要介绍了当前压水堆堆芯的改进设计及演变过程。  相似文献   

6.
The effect of trans-uranium (TRU) fuel loading on the reactor core performances as well as the actinide and isotopic plutonium compositions in the core and blanket regions has been analyzed based on the large FBR type. Isotopic plutonium composition of TRU fuel is less than that of MOX fuel except for Pu-238 composition which obtains relatively higher composition. A significant increase of plutonium vector composition is shown by Pu-238 for TRU fuel in the core region as well as its increasing value in the blanket region for doping MA case. Excess reactivity can be reduced significantly (5% at beginning of cycle) and an additional breeding gain can be obtained by TRU fuel in comparison with MOX fuel. Doping MA in the blanket regions reduces the criticality for a small reduction value (0.1%) and it gives a reduction value of breeding ratio. Loading MA in the core regions as TRU fuel composition gives relatively bigger effect to increase the void reactivity coefficient mean while it gives less effect for loading MA in the blanket regions. Similar to the void reactivity coefficient profile, loading MA is more effective to the change of Doppler coefficient in the core regions in comparison with loading MA in the blanket regions which gives slightly less negative Doppler coefficient. Obtained Pu-240 vector compositions in the core region are categorized as practically unusable composition for nuclear device based on the Pellaud's criterion. Less than 7% Pu-240 vector compositions in the blanket region are categorized as weapon grade composition for no doping MA case. Obtaining 9% of Pu-238 composition by doping MA 2% in the blanket regions is enough to increase the level of proliferation resistance for denaturing plutonium based on the Kessler's criterion.  相似文献   

7.
国内外的压水堆燃料组件最新设计中,广泛采用钆燃料(UO2-Gd2O3)作为可燃毒物来控制初始反应性和展平堆芯功率分布。钆燃料棒的性能与普通燃料棒存在较大差异,本文利用燃料元件性能分析程序FRAPCON-3.5对BR3堆内含钆燃料棒性能进行计算,并与实验测量值进行比较。结果表明:FRAPCON-3.5对含钆燃料棒的计算结果与实验测量值符合较好;含钆燃料棒在辐照初期强化了燃料棒自屏效应,对燃料的径向功率分布影响显著;在平均功率密度相同的情况下,燃料中加入钆会导致热导率降低,芯块温度升高;钆含量不同,裂变气体释放及燃料和包壳的变形略有差异。  相似文献   

8.
Fuel rods with burnup values beyond 50 GWd/t are characterised by relatively large amounts of fission products and a high abundance of major and minor actinides. Of particular interest is the change in the reactivity of the fuel as a function of burnup and the capability of modern codes to predict this change. In addition, the neutron emission from burnt fuel has important implications for the design of transport and storage facilities. Measurements have been made of the reactivity effects and the neutron emission rates of highly burnt uranium oxide and mixed oxide fuel rod samples coming from a pressurised water reactor (PWR). The reactivity measurements have been made in a PWR lattice in the PROTEUS zero-energy reactor moderated in turn with: water, a water and heavy water mixture and water containing boron. A combined transport flask and sample changer was used to insert the 400 mm long burnt fuel rod segments into the reactor. Both control rod compensation and reactor period methods were used to determine the reactivities of the samples. For the range of burnup values investigated, an interesting exponential relationship has been found between the neutron emission rate and the measured reactivity.  相似文献   

9.
One important parameter in the design and the analysis of a nuclear reactor core is the reactivity worth of the control rods, i.e. their efficiency to absorb excess reactivity. The control rod worth is affected by parameters such as the fuel burnup in the rod vicinity, the Xe concentration in the core, the operational time of the rod and its position in the core. In the present work, two different computational approaches, a deterministic and a stochastic one, were used for the determination of the rods worth dependence on the fuel burnup level and the Xe concentration level in a conceptual, symmetric reactor core, based on the MTR fuel assemblies used in the Greek Research Reactor (GRR-1). For the deterministic approach the neutronics code system composed by the SCALE modules NITAWL and XSDRN and the diffusion code CITATION was used, while for the stochastic one the Monte Carlo code TRIPOLI was applied. The study showed that when Xe is present in the core, the rods worth is significantly reduced, while the rod worth variation with increasing burnup depends on the rods position in the core grid. The rod worth obtained with the use of the Monte Carlo code is higher than the one obtained from the deterministic code.  相似文献   

10.
A new small reactor concept called the Package-Reactor has been jointly developed by Hitachi, Ltd. and Mitsubishi Heavy Industries, Ltd. The reactor technology was based on that of conventional LWRs. The reactor core consists of 12 cassettes containing fuel rods with a similar design to that of PWR fuel rods. Cassettes are placed in air at atmospheric pressure. Tube-type control clusters placed outside the pressure boundary are used as the core shutdown system. Natural circulation with two-phase flow is employed for the core cooling system and no re-circulation pumps are required. With these concepts the Package-Reactor eliminates any active components that operate in high pressure regions of the reactor and its capital costs can be reduced. The feasibility of reactivity control by using moderator void feedback and burnable poisons was studied to reduce operational and maintenance costs. It was found that a continuous operation of more than 5 years without any operations to control reactivity would be feasible with a UO2 fuel enrichment of 5.0 wt%, which is the upper limit for UO2 fuel enrichment under the current regulations in Japan. In addition, we researched the core reflectors' characteristics of the Package-Reactor.  相似文献   

11.
Assessment of fuel conversion from high enriched uranium (HEU) to low enriched uranium (LEU) fuel in the Syrian MNSR reactor was conducted in this paper. Three 3-D neutronic models for the Syrian MNSR reactor using the MCNP-4C code were developed to assess the possibility of fuel conversion from 89.87% HEU fuel (UAl4–Al) to 19.75% LEU fuel (UO2). The first model showed that 347 fuel rods with HEU fuel were required to obtain a reactor core with 5.17 mk unadjusted excess reactivity. The second model showed that only 200 LEU fuel rods distributed in the reactor core like the David star figure were required to obtain a reactor core with 4.85 mk unadjusted excess reactivity. The control rod worth using the LEU fuel was enhanced. Finally, the third model showed that distribution of 200 LEU fuel rods isotropically in the 10 circles of the reactor core failed to convert the fuel since the calculated core unadjusted excess reactivity for this model was 10.45 mk. This value was far beyond the reactor operation limits and highly exceeded the current MNSR core unadjusted excess reactivity (5.17 mk).  相似文献   

12.
A new small reactor concept named the Package-Reactor has been jointly developed by Hitachi, Ltd. and Mitsubishi Heavy Industries, Ltd. The reactor technology was built from that of conventional LWRs. The reactor core consists of 12 cassettes containing fuel rods with a similar design to that of PWR fuel rods. Each cassette has about a 0.4 m outer diameter and they are fixed with about 0.5 m pitch to each other in the atmospheric pressure condition. A tube-type control cluster was developed. It can decrease the rise of reactivity for the one-rod-stuck condition. An advanced cassette design was studied in which the down-comer is placed at the center of the fuel region. This concept, which improves neutron economics and the cold shutdown margin, will increase the marketability of the Package-Reactor. An operation period of more than 8 years can be achieved with UO2 fuel enrichment of 5.0wt%.  相似文献   

13.
Fuel behaviors of the large fast breeder reactor have been investigated, as well as material attractiveness based on isotopic plutonium composition for evaluating proliferation resistance with regards to a combined evaluation of decay heat and spontaneous fission neutron barrier as key parameters of isotopic material barrier. Trans-uranium fuel (TRU) (MA + U-Pu) in the core regions and MA doping (MA + natural U) in the blanket regions as options of MA loading produce a higher Pu-238 composition for denaturing plutonium, which mainly comes from converted Np-237. The isotopic plutonium composition of TRU fuel is relatively less than the Pu composition of MOX fuel except for the Pu-238 composition that is higher than that of MOX fuel. MA in the core or blanket regions, which produces a higher Pu-238 composition, plays a key role in obtaining a high-level material barrier of decay heat and spontaneous fission neutron compositions. The material attractiveness level of plutonium composition in the core regions can be categorized as practically unusable and its level becomes less by adopting TRU fuel. In addition, the material attractiveness level in the blanket regions as being practically unusable can be reached from weapon grade by loading MA at a 2% doping rate.  相似文献   

14.
The current Modular Helium Reactor (MHR) fuel cycle uses fissile LEU (19.8 wt% U-235) and depleted uranium in separate TRISO particles, in a single fuel rod within a graphite matrix. The TRISO particle volume packing fraction (PF) in the fuel rods is 29%, of which the LEU particle PF is 62%. The lifetime between refuelings is about 476 effective full power days (EFPD). In this paper we assess the possibility of replacing the depleted uranium TRISO particles with thorium TRISO particles, and evaluate the impact of such replacement on fuel cycle length. A preliminary scoping study was performed to determine the most promising fuel rod/zoning configurations. The scoping study indicates that there is advantage to separating the thorium TRISO particles from the LEU particles at the fuel rod level instead of mixing them within a single rod. An axial checkerboard distribution of the fuel rods where all uranium and all thorium rods are interchangeable along the axial direction within the graphite block is the most promising configuration that was identified in this study and can be lead to a fuel cycle length extension of 50-80% relative to the current design, with only a modest increase in the fissile material loading (15-20%). To this advantage can be added the benefit of a significant reduction in nuclear waste and in health risk. This study also lays the foundation for improving the fuel rod arrangement within the graphite block and the graphite blocks within the entire reactor core. The analysis is limited to a once - through fuel cycle based on in situ fissioning of the U-233, without further separation and reprocessing. The preliminary heat transfer analysis indicates that the maximum temperature in the fuel will be raised by about 10-15% over that of current MHR design.  相似文献   

15.
A design of a small nuclear reactor for a large-diameter NTD-Si using a conventional Pressurized Water Reactors (PWR) full-length assembly was proposed in previous works. The height of the full-length assembly was 400 cm, and the overall size of the reactor and reflector around the core became large. In addition, the irradiation channel became very long, making handling of the Si ingots in the channel more difficult. The use of a short PWR fuel assembly, with a height of 100 cm, was considered in the current work. With the shorter assembly, the design of the reactor became compact and more practical. Gd2O3 and control rods were used to suppress excess reactivity. Criticality, neutron transport, and core burn-up calculations were performed using the MVP/GMVP II code and MVP-BURN code. Steady-state single-channel thermal hydraulic analyses were also performed. The calculation results showed that the reactor could be critical over 1200 days, and that heat removal from core was possible under 1 atm operating pressure. Large-diameter ingot up to 20 cm in height could be doped with sufficient uniformity. The reactor semiconductor production rate was estimated, and varied between 48 tons/year and 70 tons/year for the 50 Ω cm target resistivity depending on the position of the control rod.  相似文献   

16.
A design concept for a small nuclear reactor for neutron transmutation doping silicon (NTD-Si) using a Pressurized Water Reactor (PWR) full-length fuel assembly was proposed in our previous work. The excess reactivity was suppressed by a combination of Gd2O3 and soluble boron, which results in a flatter flux profile over the core than with control rod insertion; however, the soluble boron system for reactivity control is quite complex and expensive. The removal of this system would make the design much simpler. In the current work, the removal of soluble boron is considered. Criticality, neutron transportation and core burn-up calculations were performed using the MVP/GMVP II code and MVP-BURN code. The calculation results show that the insertion of control rods in five of the nine assemblies is enough to suppress reactivity. The thermal hydraulic analysis showed that heat removal from the core was possible under 1 atm operating pressure. Silicon ingots up to 30 cm in diameter could be irradiated with sufficient uniformity in the irradiation channels.  相似文献   

17.
Based on the EFTTRA-T2 experiment results, we study the transmutation characteristics of pressurized water reactors (PWR) after coating a thin layer of Tc-99 on the fuel rods. Our calculation shows that for the same Tc-99 loading amount, the effect on the PWR keff after coating Tc-99 on the PWR fuel rods is much less than that of the homogeneous addition of Tc-99 to uranium dioxide nuclear fuel. If we just coat 0.2λc (0.0065 mm) thickness Tc-99 on PWR fuel rods, the total Tc-99 coating amount is about 291.37 kg, this is approximately equivalent to the 4 PWR Tc-99 annual outputs, and the system keff merely decreases to 0.98530.Loading Tc-99 to the PWR is equivalent to introducing extra poisons to PWR system to control excess reactivity, some control poisons like boric acid concentration in primary coolant or burnable poison rods in fuel assemblies are needed to be removed to keep the reactor in criticality. As Tc-99 coating thickness increases from 0.05λc to 0.2λc, no matter which substitution pattern is used, B16→12 or C16→12, the system keff variations are almost the same and can return to criticality again after removing corresponding burnable poison rods from fuel assemblies. For coating 0.15λc or 0.2λc thickness on the fuel rods of PWR, the system keff is slightly below the criticality either in B16→12 or C16→12 substitution pattern, we may reduce the concentration of the boric acid slightly to let the system in criticality again.Our calculation results indicate that the optimal coating thickness of Tc-99 on PWR fuel rods is probably between 0.15λc to 0.2λc, i.e. 0.00488–0.0065 mm.  相似文献   

18.
计算了使用大亚湾核电站乏燃料的池式堆所需的组件数,分析了^135Xe,^149Sm和^241Pu对反应性的影响及乏燃料冷却时间与循环长度的关系,指出抽掉含钆棒能够增加循环长度。设计了使用大亚湾核电站乏燃料的池式堆堆芯布置方案?从核设计的角度进一步阐明了这种堆型的可实现性。  相似文献   

19.
ABSTRACT

Neutronics analysis was conducted for a proposed megawatt-class gas cooled space nuclear reactor design. The reactor design has a high operating temperature of up to 1500 K. Annular UO2 fuel rods were used to reduce the central temperature of the fuel. The thermal power is 2.3 MWt and is converted into electric power by a direct Brayton cycle. The control rods were arranged in different configurations and were analyzed in order to evaluate the influence on the reactor design in different scenarios. The calculation results reveal that the control rods arrangements have influences on the begin-of-life (BOL) excess reactivity and the shutdown reactivity. The distribution of control rods affects the neutron economy and leakage in the fuel region, consequently affecting the reactivity. It is also known that the reactivity in flooding scenarios are not sensitive to different control rod arrangements. Meanwhile, according to calculation results, the proposed reactor design has enough shutdown reactivity margin which will allow for flexible control strategy. Further analysis is still needed for more detailed and accurate parameters of the reactor design.  相似文献   

20.
The Deep Burn Project is developing high burnup fuel based on Ceramically Coated (TRISO) particles, for use in the management of spent fuel Transuranics. This paper evaluates the TRU deep-burn in a High Temperature Reactor (HTR) that recycles its own transuranic production. The DB-HTR is loaded with standard LEU fresh fuel and the self-generated TRUs are recycled into the same core (after reprocessing of the original spent fuel). This mode of operation is called self-recycling (SR-HTR). The final spent fuel of the SR-HTR can be disposed of in a final repository, or recycled again.In this study, a single recycling of the self-generated TRUs is considered. The UO2 fuel kernel is 12% uranium enrichment and the diameter of the kernel is 500 μm. TRISO packing fraction of UO2 fuel compact is 26%. In the SR-HTR fuel cycle, it is assumed that the spent UO2 fuel is reprocessed with conventional technology and the recovered TRUs are fabricated into Deep Burn TRISO fuel. The diameter of 200 μm is used for the TRU fuel kernel. A typical coating thickness is used. The core performance is evaluated for an equilibrium cycle, which is obtained by cycle-wise depletion calculations. From the analysis results, the equilibrium cycle lengths of Case 1 (5-ring fuel block SR-HTR) and Case 2 (4-ring fuel block SR-HTR) are 487 and 450 EFPDs (effective full power days), respectively. And the UO2 fuel discharge burnups of Case 1 and Case 2 are 10.3% and 10.1%, respectively. Also, the TRU discharge burnups of Case 1 and Case 2 are 64.7% and 63.5%, respectively, which is considered extremely high. The fissile (Pu-239 and Pu-241) content of the self-generated TRU vector is about 52%. The deep-burning of TRU in SR-HTR is partly due to the efficient conversion of Pu-240 to Pu-241, which is boosted by the uranium fuel in SR-HTR. It is also observed that the power distribution is quite flat within the uranium fuel zone. The lower power density in TRU fuel is because the TRU burnup is very high. Also, it is found that transmutation of Pu-239 is near complete in SR-HTR and that of Pu-241 is extremely high in all cases. The decay heat of the SR-HTR core is very similar to the UO2-only core. However, accumulation of the minor actinides is not avoidable in the SR-HTR core. The extreme high burnup of the Deep Burn fuel greatly reduces the amount of heat producing isotopes that could be problematic in spent fuel repositories (like Pu-238).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号