首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-wind response of tall buildings   总被引:1,自引:0,他引:1  
A design procedure was developed using random vibration theory and uses mode-generalized cross-wind force spectra and aerodynamic data to calculate the cross-wind displacement and acceleration responses of tall buildings. The force spectra of a number of building shapes and sizes in both suburban and city centre type wind flow are presented. The proposed design procedure gives reasonable estimates of the cross-wind response, compared with wind tunnel measurements, at reduced wind velocities and at structural damping values consistent with modern habitable tall building design. This allows assessment of the structural requirements of tall buildings to be made at an early design stage, and also allows the designers to assess the need for more detailed and expansive wind tunnel model tests.  相似文献   

2.
A tall building reacts sensitively to winds because the wind force increases according to the height and shape of the building. Various shapes of tall buildings and their aerodynamic characteristics have been studied extensively. For structural design and occupant comfort, the dynamic displacement of a tall building must be maintained within the criteria for acceptable levels of wind‐induced motion. An aerodynamically appropriate building shape needs to be selected at the design stage of a tall building. In this study, wind‐induced vibration responses were investigated, according to the criteria for maximum acceptable displacement and acceleration. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
强风作用下楔形外形超高层建筑横风效应试验研究   总被引:1,自引:0,他引:1  
谢壮宁  李佳 《建筑结构学报》2011,32(12):118-126
对正方形平面沿高度方向逐渐收缩的楔形外形超高层建筑进行同步测压试验,分析不同高度横风向气动荷载功率谱密度、相干特征、结构基底气动弯矩和相应的风振响应,在此基础上进一步考虑切角对结构气动荷载和响应的影响。研究结果表明:采用锥形外形可有效地消减作用于结构上的横风向气动荷载,并在一定条件下消减结构的风振响应;楔形外形可以抑制漩涡脱落的强度,但不能消除结构的漩涡脱落现象,且会升高结构的漩涡脱落频率并进而升高结构的风致响应;在楔形外形的基础上再进行切角处理可以基本消除结构的横风向漩涡脱落现象;经切角处理后,楔形外形结构的横风向风致峰值基底弯矩在结构1阶模态自振周期6.12~14.28 s范围内基本保持不变;对于锥度η为2.2%和 4.4%的高层建筑,切角处理后其100年重现期的峰值基底弯矩分别比未切角减少31.13%和14.58%。  相似文献   

4.
This paper studies wind-induced interference effects on a row of five square-plan tall buildings arranged in close proximity. Mean and fluctuating wind loads are measured on each building member and wind-induced dynamic responses of the building are estimated with the high-frequency force-balance technique. The modifications of building responses from interference over a practical range of reduced velocities are represented by an envelope interference factor. Wind tunnel experiments and response analysis are carried out under all possible angles of wind incidence, at four different building separation distances, and for two arrangement patterns of buildings in the row, that is the parallel and diamond patterns. It is found that building interference leads to amplified dynamic responses in many cases but reduction in responses also occurs at some wind incidence. For a building row of the parallel pattern, five distinct wind incidence sectors of different levels and mechanisms of interference effect can be identified. The largest values of envelope interference factors can reach 2.4 for the torsional responses. When the row of tall buildings is arranged in the diamond pattern, increase in wind excitation occurs at many wind angles due to a “wind catchment” effect. The interference factors have larger peak values, reaching 2.1 in the sway directions and above 4 in torsion. However, all large amplifications of building responses do not occur in the situations of peak resonant dynamic responses of the single isolated building. Thus, the design values of peak dynamic responses of a tall building are not significantly magnified when placed in a row.  相似文献   

5.
为研究正六边形超高层建筑横风向风致响应和气动阻尼比,开展了一系列多自由度气弹模型风洞试验。测量模型顶部风致位移和加速度响应,基于随机减量法识别了横风向气动阻尼比。结果表明,在顶角迎风时,正六边形超高层建筑易于出现大幅涡振现象,在立面迎风时没有出现涡振现象。顶角迎风时,横风向气动阻尼比随折算风速增大呈现出“先增大到最大正值、再迅速转为最小负值,再平稳回升到零值附近”完整过程。而立面迎风时,横风向气动阻尼比与折算风速近似呈线性关系。最后,建立横风向气动阻尼比的经验评估公式。相关研究可为正六边形超高层建筑的抗风设计和规范完善提供参考。  相似文献   

6.
This paper presents an integrated procedure for wind‐induced response analysis and design optimization for rectangular steel tall buildings based on the random vibration theory and automatic least cost design optimization technique using Micro‐Genetic Algorithm (GA). The developed approach can predict wind‐induced drift and acceleration responses for serviceability design of a tall building; the technique can also provide an optimal resizing design of the building under wind loads to achieve cost‐efficient design. The empirical formulas of wind force spectra obtained from simultaneous measurements of surface pressures on various rectangular tall building models in wind tunnel tests are verified testified using a published example. Upon the known wind force spectra, the equivalent static wind loads for every storey, such as along‐wind, across‐wind and torsional loads, are then determined and applied for structural analysis including estimation of wind‐induced responses. An improved form of GAs, a Micro‐GA, is adopted to minimize the structural cost/weight of steel buildings subject to top acceleration and lateral drifts constraints with respect to the discrete design variables of steel section sizes. The application and effectiveness of the developed integrated wind‐induced response analysis and design optimization procedure is illustrated through a 30‐storey rectangular steel building example. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A comprehensive wind tunnel test program was conducted to investigate interference excitation mechanisms on translational and torsional responses of an identical pair of tall buildings. Motion responses of a three-degree-of-freedom aeroelastic building model were measured. Both upstream and downstream interference effects were studied in this research. The experimental results showed that with an open terrain wind model, both dynamic translational and dynamic torsional responses generally increased under interference effects for an operating reduced wind velocity of 6. Measured response spectra indicated that amplified along-wind, cross-wind and torsional responses were largely induced by the wake of an upstream interfering building. The significance of interference effects and the dominant interference mechanisms depended upon the location of the aeroelastic model in the wake region. Furthermore, coupled translational–torsional motion of the aeroelastic building model tested was found to cause only small increases in the resultant motions at the building corner.  相似文献   

8.
Modern tall steel buildings are wind sensitive and are prone to dynamic serviceability problems. Although wind tunnel techniques have emerged as valuable tools in providing reliable prediction of the wind‐induced loads and effects on tall buildings, current design practice normally considers the wind tunnel‐derived loads as constant static design loads. Such practice does not take into account the change in wind‐induced structural loads while the dynamic properties of a building are modified during the design synthesis process. This paper presents a computer‐based technique that couples together an aerodynamic wind tunnel load analysis routine and an element stiffness optimization method to minimize the cost of tall steel buildings subject to the lateral drift design criteria, while allowing for instantaneous prediction and updating of wind loads during the design synthesis process. Results of a full‐scale steel building framework with the same geometric shape of the Commonwealth Advisory Aeronautical Research Council (CAARC) standard building indicate that not only is the proposed technique able to produce the cost‐effective element stiffness distribution of the structure satisfying the serviceability wind drift design criteria, but a potential benefit of reducing the design wind loads can also be achieved by the stiffness optimization method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Across-wind loads of typical tall buildings   总被引:4,自引:0,他引:4  
Previous studies have indicated that the across-wind dynamic responses of super-tall buildings are usually larger than the along-wind ones. With the increase of heights, the across-wind dynamic response of super-tall buildings has been a problem of great concern. In this paper, 15 typical tall building models are tested with high-frequency force balance technique in a wind tunnel to obtain the first-mode generalized across-wind dynamic forces. New formulas for the power spectra of the across-wind dynamic forces, the coefficients of base moment and shear force are then derived. Parametric analyses of the effects of factors on the across-wind loads of the buildings are performed. Besides, a SDOF aeroelastic model of a square tall building with an aspect ratio of 6 is selected from the above buildings and is tested to investigate its across-wind dynamic response and aerodynamic damping characteristics. The power spectrum of the across-wind force of the square building is employed to compute its across-wind dynamic responses with and without considering the effect of the aerodynamic damping. The computed responses are then compared with the corresponding responses from the aeroelastic model test to verify the present formulas of the across-wind loads of buildings.  相似文献   

10.
Across‐wind aerodynamic damping ratios are determined from the wind‐induced acceleration responses of 10 aeroelastic models of square super high‐rise buildings in an urban flow condition (exposure category C in the Chinese code) using the random decrement technique. Moreover, the influences of amplitude‐dependent structural damping ratio on the estimation of aerodynamic damping ratio are discussed. The validity of estimated damping is examined through a comparison with previous research achievements. On the basis of the estimated results, the characteristics of the across‐wind aerodynamic damping ratios of modified square high‐rise buildings are studied. The effects of aerodynamically modified cross‐sections, such as chamfered, slotted and tapered cross‐section, on the across‐wind aerodynamic damping ratio are investigated. The results indicate that modifications of cross‐sections are not always effective in suppressing the aeroelastic effects of super high‐rise buildings. Low corner‐cut ratios (chamfer ratios from 5% to 20% and slot ratios from 5% to 10%) and low taper ratio (1%) significantly decrease the magnitudes of absolute aerodynamic damping ratios. However, large modifications of cross‐sections (slot ratio of 20% and taper ratios from 3% to 5%) increase wind‐induced responses by changing the aerodynamic damping ratios. According to the database, empirical aerodynamic damping function parameters are fitted for high‐rise buildings with aerodynamically modified square cross‐sections. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
山地风场中超高层建筑风荷载幅值特性试验研究   总被引:3,自引:1,他引:2       下载免费PDF全文
针对山地风场中超高层建筑风荷载特点,在1.4m×1.4m风洞中进行了11个不同高宽比、厚宽比矩形截面和圆形截面超高层建筑表面测压风洞试验,分析了阻力系数平均值、均方根值和升力、扭矩系数均方根值受来流风湍流度、建筑高宽比、厚宽比和层相对高度等因素的影响。结果表明:矩形截面建筑各气动力幅值特性明显随湍流度、建筑高宽比、厚宽比、层相对高度的改变而变化,而圆形截面建筑各气动力幅值特性仅随湍流度、层相对高度的改变而变化。根据风洞试验结果,建立了正方形截面和圆形截面风荷载幅值特性的数学模型,通过比较说明与风洞试验结果吻合较好,可为山地风场中的超高层建筑风致响应计算提供依据。图11表5参10  相似文献   

12.
上海中心大厦结构抗风设计   总被引:4,自引:0,他引:4  
上海中心大厦为超高层建筑,建筑立面呈三维曲面和旋转形态,合理的抗风设计对结构的安全性、适用性和经济性具有重要意义。通过对上海中心大厦的风气候、建筑外形空气动力学优化以及风洞试验研究,获得了体型系数、斯托罗哈数和地貌类别等计算参数,分析了上海中心大厦风致振动、舒适度以及调谐质量阻尼器对风振舒适度的影响。研究结果表明:采用Vickery风场模型预测得到的梯度风速比采用Georgiou模型预测得到的梯度风速有所增加;风荷载下的结构响应大于多遇地震作用下的结构响应,但小于基本烈度地震作用下的结构响应,合成位移角满足1/500限值的要求。图13表11参14  相似文献   

13.
This article presents a Kalman‐filter‐based estimation algorithm for identification of wind loads on a super‐tall building using limited structural responses. In practice, acceleration responses are most convenient to be measured among wind‐induced dynamic responses of structures. The proposed inverse method allows estimating the unknown wind loads and structural responses of a super‐tall building using limited acceleration measurements. Taipei 101 Tower is a super‐tall building with 101 stories and a height of 508 m. Field measurements and numerical simulations of the wind effects on Taipei 101 Tower are conducted. The wind loads acting on the super‐tall building are estimated based on the wind‐induced responses determined from the numerical simulations and the refined finite‐element model of the structure, which are in good agreement with the exact results. The stability performance of the proposed algorithm is evaluated. The influence of noise levels in the measurements and covariance matrix of noise on the identification accuracy are investigated and discussed based on the L‐curve method. Finally, the wind loads and structural responses are reconstructed based on the field‐measured accelerations during Typhoon Matsa. The accuracy of the identified results is verified by comparing the reconstructed acceleration responses with the field measurements. The results of this study show that the proposed inverse approach can provide accurate predictions of the wind loads and wind‐induced responses of super‐tall buildings based on limited measured responses.  相似文献   

14.
An experimental investigation of ground-level wind conditions around buildings with chamfered corners has been carried out in the boundary-layer wind tunnel of the Building Aerodynamics Laboratory of the Centre for Building Studies. Experiments included models of both square and chamfered buildings of various heights ranging between 60 and 180 m exposed to a simulated open country terrain. Chamfered buildings were represented by six models with faces of different length always chamfered at a 45° angle. The effect of roof chamfer was also examined.Results indicate that chamfering a corner of a tall square building at 45° to its original faces may significantly reduce the size of strong wind area in the corner stream. This reduction is more pronounced for taller buildings and occurs for normal and oblique wind directions as well. Gandemer's comfort parameters, Ψ, including some effect of turbulence give results consistent with mean velocity ratios around buildings with chamfered corners.  相似文献   

15.
为研究我国沿海地区超高层建筑的风场和风压特性,在2010年台风“鲇鱼”登陆前后对厦门沿海某超高层建筑的风场和建筑表面风压进行了同步监测。通过对实测风场和风压数据的深入分析表明:沿海地区超高层建筑风场的湍流度随风速增大变化平稳,阵风因子随湍流度的增大而增大;实测脉动风速功率谱密度与von Karman谱吻合较好;建筑各面内测点之间的瞬时风压、平均风压、平均风压系数和极值风压系数具有较强的相关性;实测平均风压和平均风压系数在迎风面较大,在背风面非常小;当风从角部吹向建筑时,随着风向角的变化,两迎风面的平均风压系数随着平均风速的增大变化规律相反;两背风面的平均风压系数随着平均风速的增大逐渐减小;迎风面的极值风压系数随着风向角的变化正负波动较大,背风面的极值风压系数分布较为均匀;迎风面的脉动风压系数较大且变化较大,背风面的脉动风压系数非常小且变化平稳;建筑各面的极值风压系数和脉动风压系数的幅值随着风速的增大逐渐减小。  相似文献   

16.
高层建筑的风致响应和等效静力荷载虽然可以通过风洞试验和动力分析有效的加以确定,在结构设计的整个过程中这些等效风力却往往被当作常数来应用。本文提出了一个结合气动风力分析和结构刚度优化的自动化技术。在结构设计中利用这个技术,可以在优化结构刚度和最小化结构造价的同时,实时检查和更新作用在建筑结构上的等效风荷载。一个几何尺度与航空研究共同顾问理事会(CAARC)建议的建筑模型一致的钢框架结构被用来进行风力分析和结构优化的例子。结果表明这个技术不但能在满足位移设计要求的情况下优化结构刚度降低造价,而且也降低了作用在结构上的等效风力。  相似文献   

17.
This paper describes the results obtained from the full‐scale measurements of wind effects on a 70‐storey tall building in Hong Kong. The objective of the experiment is to measure wind action on and wind‐induced response of the tall building. Simultaneous and continuous data of wind speeds, wind directions and acceleration responses have been recorded at the top of the tall building since 1995. The field data presented in this paper were measured during the passage of four typhoons—Typhoon Kent (1995), Typhoon Ryan (1995), Typhoon Sibyl (1995) and Typhoon Sally (1996). The characteristics of the typhoon wind and the structural responses of the building are investigated. The serviceability of this tall building under typhoon conditions is discussed on the basis of the field measurements. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Many studies on reducing across-wind responses of tall buildings have been investigated, mainly focusing on the effect of corner shape. And it is also known that changing section along the height through tapering or set-back could reduce across-wind responses of tall buildings. In this paper, to investigate the mechanism of aerodynamic force reduction, the wind tunnel tests for fluctuating pressure and fluctuating force were carried out. Two models with different tapering ratio of 5% and 10%, one set-backed model and one prototype square prism with side ratio of unity were employed under two typical boundary layers which represent suburban and urban flow condition. It is concluded that tapering or set-back helps to reduce the mean drag force and the fluctuating lift force. Reduction ratio increases as tapering ratio increases, and the set-backed model is more effective to reduce the fluctuating lift force than the tapered model with identical surface area, reducing the coefficients about 40% in suburban flow condition. And by tapering and set-back, the power spectra of wind pressures at sideward surface become wideband and the peak frequencies depend on height, which makes the correlation near the Strouhal component low or even negative.  相似文献   

19.
Full-scale measurements of wind effects on a 70 storey tall building have been conducted. The tall building that has a height of 367 m is the second tallest structure in Hong Kong. The amplitude-dependent characteristics of damping have been obtained by using the random decrement technique from the field measurements of acceleration responses. The objective of this study is to present detailed investigations into the effects of amplitude-dependent damping on the wind-induced responses of the super tall building based on the measured non-linear damping and wind action characteristics. An efficient and less time consuming digital simulation technique is developed to generate time series of turbulent wind loads acting on the tall building based on the measured wind speed records. The predicted dynamic responses of the building using the actual amplitude-dependent damping characteristics are compared with those computed by using constant damping parameters assumed by the structural designers or estimated from the field measurements in order to evaluate the adequacy of current design practices and to apply that knowledge to structural design of tall buildings. It is observed from this study that the effect of amplitude-dependent damping on the dynamic responses of such a super tall building is significant and knowledge of actual damping characteristics is very important in the accurate prediction of wind-induced vibrations of a tall building.  相似文献   

20.
Numerical evaluation of wind effects on a tall steel building by CFD   总被引:4,自引:0,他引:4  
A comprehensive numerical study of wind effects on the Commonwealth Advisory Aeronautical Council (CAARC) standard tall building is presented in this paper. The techniques of Computational Fluid Dynamics (CFD), such as Large Eddy Simulation (LES), Reynolds Averaged Navier-Stokes Equations (RANS) Model etc., were adopted in this study to predict wind loads on and wind flows around the building. The main objective of this study is to explore an effective and reliable approach for evaluation of wind effects on tall buildings by CFD techniques. The computed results were compared with extensive experimental data which were obtained at seven wind tunnels. The reasons to cause the discrepancies of the numerical predictions and experimental results were identified and discussed. It was found through the comparison that the LES with a dynamic subgrid-scale (SGS) model can give satisfactory predictions for mean and dynamic wind loads on the tall building, while the RANS model with modifications can yield encouraging results in most cases and has the advantage of providing rapid solutions. Furthermore, it was observed that typical features of the flow fields around such a surface-mounted bluff body standing in atmospheric boundary layers can be captured numerically. It was found that the velocity profile of the approaching wind flow mainly influences the mean pressure coefficients on the building and the incident turbulence intensity profile has a significant effect on the fluctuating wind forces. Therefore, it is necessary to correctly simulate both the incident wind velocity profile and turbulence intensity profile in CFD computations to accurately predict wind effects on tall buildings. The recommended CFD techniques and associated numerical treatments provide an effective way for designers to assess wind effects on a tall building and the need for a detailed wind tunnel test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号