首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hamberg M 《Lipids》2002,37(4):427-433
[1-14C]Linolenic acid was incubated with homogenates of leaves from the aquatic plants Ranunculus lingua (greater spearwort) or R. peltatus (pond water-crowfoot). Analysis by reversed-phase high-performance liquid radiochromatography demonstrated the formation of a new divinyl ether FA, i.e., 12-[1′(E), 3′(Z)-hexadienyloxy]-9(Z), 11(Z)-dodecadienoic acid [11(Z)-etherolenic acid] as well as a smaller proportion of ω5(Z)-etherolenic acid previously identified in terrestrial Ranunculus plants. The same divinyl ethers were formed upon incubation of 13(S)-hydroperoxy-9(Z), 11(E), 15(Z)-octadecatrienoic acid, a lipoxygenase metabolite of linolenic acid, whereas the isomeric hydroperoxide, 9(S)-hydroperoxy-10(E), 12(Z), 15(Z)-octadecatrienoic acid, was not converted into divinyl ethers in R. lingua or R. peltatus. Incubation of [1-14C]linoleic acid or 13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoic acid produced the divinyl ether 12-[1′(E)-hexenyloxy]-9(Z), 11(Z)-dodecadienoic acid [11(Z)-etheroleic acid] and a smaller amount of ω5(Z)-etheroleic acid. The experiments demonstrated the existence in R. lingua and R. peltatus of a divinyl ether synthase distinct from those previously encountered in higher plants and algae.  相似文献   

2.
Mats Hamberg 《Lipids》1989,24(4):249-255
The major part (80%) of the fatty acid hydroperoxide isomerase activity present in homogenates of the fungus,Saprolegnia parasitica, was localized in the particle fraction sedimenting at 105,000×g. 13(S)-Hydroperoxy-9(Z),11(E)-octadecadienoic acid and 9(S)-hydroperoxy-10(E),12(Z)-octadecadienoic acid were both good substrates for the particle-bound hydroperoxide isomerase. The products formed from the 13(S)-hydroperoxide were identified as an α,β- and a γ,δ-epoxy alcohol, i.e., 11(R),12(R)-epoxy-13(S)-hydroxy-9(Z)-octadecenoic acid and 9(S),10(R)-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid, respectively. The 9(S)-hydroperoxide was converted in an analogous way into an α,β-epoxy alcohol, 10(R),11(R)-epoxy-9(S)-hydroxy-12(Z)-octadecenoic acid and a γ,δ-epoxy alcohol, 12(R),13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoic acid. 9(R,S)-Hydroperoxy-10(E),12(E)-octadecadienoic acid and 13(R,S)-hydroperoxy-9(E),11(E)-octadecadienoic acid were poor substrates for theS. parasitica hydroperoxide isomerase. Experiments with 13(R,S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid showed that the 13(R)-hydroperoxy enantiomer was slowly isomerized by the enzyme. The major product was identified as α,β-epoxy alcohol 11(R),12(R)-epoxy-13(R)-hydroxy-9(Z)-octadecenoic acid.  相似文献   

3.
Hamberg M 《Lipids》2000,35(4):353-363
[1-14C]Linoleic acid was incubated with a whole homogenate preparation from potato stolons. The reaction product contained four major labeled compounds, i.e., the α-ketol 9-hydroxy-10-oxo-12(Z)-octadecenoic acid (59%), the epoxy alcohol 10(S),11(S)-epoxy-9(S)-hydroxy-12(Z)-octadecenoic acid (19%), the divinyl ether colneleic acid (3%), and a new cyclopentenone (13%). The structure of the last-mentioned compound was determined by chemical and spectral methods to be 2-oxo-5-pentyl-3-cyclopentene-1-octanoic acid (trivial name, 10-oxo-11-phytoenoic acid). Steric analysis demonstrated that the relative configuration of the two side chains attached to the five-membered ring was cis, and that the compound was a racemate comprising equal parts of the 9(R), 13(R) and 9(S), 13(S) enantiomers. Experiments in which specific trapping products of the two intermediates 9(S)-hydroperoxy-10(E), 12(Z)-octadecadienoic acid and 9(S), 10-epoxy-10, 12(Z)-octadecadienoic acid were isolated and characterized demonstrated the presence of 9-lipoxygenase and allene oxide synthase activities in the tissue preparation used. The allene oxide generated from linoleic acid by action of these enzymes was further converted into the cyclopentenone and α-ketol products by cyclization and hydrolysis, respectively. Incubation of [1-14C]linolenic acid with the preparation of potato stolons afforded 2-oxo-5-[2′(Z)-pentenyl]-3-cyclopentene-1-octanoic acid (trivial name, 10-oxo-11, 15(Z)-phytodienoic acid), i.e., an isomer of the jasmonate precursor 12-oxo-10, 15(Z)-phytodienoic acid. Quantitative determination of 10-oxo-11-phytoenoic acid in linoleic acid-supplied homogenates of different parts of the potato plant showed high levels in roots and stolons, lower levels in developing tubers, and no detectable levels in leaves.  相似文献   

4.
Hamberg M  Olsson U 《Lipids》2011,46(9):873-878
The linoleate 9-lipoxygenase product 9(S)-hydroperoxy-10(E),12(Z)-octadecadienoic acid was stirred with a crude enzyme preparation from the beetroot (Beta vulgaris ssp. vulgaris var. vulgaris) to afford a product consisting of 95% of 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid (pinellic acid). The linolenic acid-derived hydroperoxide 9(S)-hydroperoxy-10(E),12(Z),15(Z)-octadecatrienoic acid was converted in an analogous way into 9(S),12(S),13(S)-trihydroxy-10(E),15(Z)-octadecadienoic acid (fulgidic acid). On the other hand, the 13-lipoxygenase-generated hydroperoxides of linoleic or linolenic acids failed to produce significant amounts of trihydroxy acids. Short-time incubation of 9(S)-hydroperoxy-10(E),12(Z)-octadecadienoic acid afforded the epoxy alcohol 12(R),13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoic acid as the main product indicating the sequence 9-hydroperoxide → epoxy alcohol → trihydroxy acid catalyzed by epoxy alcohol synthase and epoxide hydrolase activities, respectively. The high capacity of the enzyme system detected in beetroot combined with a simple isolation protocol made possible by the low amounts of endogenous lipids in the enzyme preparation offered an easy access to pinellic and fulgidic acids for use in biological and medical studies.  相似文献   

5.
Three species of brown algae,Laminaria sinclairii, L. saccharina andL. setchellii, have been investigated for the presence of oxylipins. From one,L. sinclairii, three new divinyl ether fatty acids have been characterized as methyl ester derivatives (methyl 12-[1′ (Z),3′(Z)-hexadienyloxy]-6(Z), 9(Z), 11(E)-dodecatrienoate, methyl 12-[1′ (Z), 3′ (Z)-hexadienyloxy]-9(Z), 11(E)-dodecatrienoate, and methyl 14-[1′ (Z),3′ (Z)-hexadienyloxy]-9(Z),11(E)-dodecadienoate, and methyl 14-[1′ (Z),3′(Z)-hexadienyloxy]-5(Z),8(Z),11(Z),13(E)-tetradecatetraenoate) by a variety of spectroscopic methods. In addition, one new [13(S)-hydroxy-6(Z),9(Z),11(E),15(Z)-octadecatetraenoic acid] and four known monohydroxy polyunsaturated fatty acids have been isolated from all three species as their methyl ester derivatives. The occurrence of these compounds in brown algae strongly suggests that these organisms possess an active lipoxygenase(s) with ω6 specificity. A preliminary summary of this work was presented at the XIVth International Seaweed Symposium, Brest, France, August 1992 (10).  相似文献   

6.
α-Tocopherol was reacted with methyl 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoate in the presence of an iron-chelate, Fe(III)-acetylacetonate, at 37°C in benzene. The reaction was carried out either aerobically or anaerobically. The main products of α-tocopherol under air were isolated and identified as two stereoisomers of 4a,5-epoxy-8a-hydroperoxy-α-tocopherone, four stereoisomers of methyl 9-(8a-dioxy-α-tocopherone)-12,13-epoxy-10(E)-octadecenoate, four stereoisomers of methyl 11-(8a-dioxy-α-tocopherone)-12,13-epoxy-9(Z)-octadecenoate, two stereoisomers of methyl 13(S)-(8a-dioxy-α-tocopherone)-9(Z),11(E)-octadecadinoate, and α-tocopherol dimer. Besides the 8a-(lipid-peroxy)-α-tocopherones, two stereoisomers of methyl 11-(α-tocopheroxy)-12(S),13(S)-epoxy-9(E)-octadecenoate, two stereoisomers of methyl 9-(α-tocopheroxy)-12(S),13(S)-epoxy-10(E)-octadecenoate, and two isomers of methyl (α-tocopheroxy)-octadecadienoate were obtained under nitrogen atmosphere. The results indicate that the peroxyl radicals from lipid hydroperoxides prefer to react with the 8a-carbon radical of α-tocopherol and the carbon-centered radicals react with the phenoxyl radical of α-tocopherol.  相似文献   

7.
The oxylipin chemistry of the temperate red alga Polyneura latissima has been investigated. The structures of three novel oxylipins, 8-[1′(Z),3′(Z),6′(Z)-dodecatriene-1′-oxyl-5(Z),7(E)-octadienoic acid, 7(S *)-hydroxy-8(S *),9(S *)-epoxy-5(Z), 11(Z),14(Z)-eicosatrienoic acid, 7(R *)-hydroxy-8(S *), 9(S *)-epoxy-5(Z), 11(Z),14(Z)-eicosatrienoic acid, together with two known eicosanoids, 9(S)-hydroxy-5(Z), 7(E), 11(Z), 14(Z)-eicosatetraenoic acid, and 9, 15-dihydroxy-5(Z),7(E),11(Z),13(E)-eicosatetraenoic acid, were elucidated by spectroscopic methods and chemical degradation. The oxygenation pattern of these oxylipins suggests that P. latissima metabolizes polyunsaturated fatty acids via a 9(S)-lipoxygenase.  相似文献   

8.
Recently, corn (Zea mays L.) hydroperoxide dehydrase was found to catalyze the conversion of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid into an unstable fatty acid allene oxide, 12,13(S)-epoxy-9(Z),11-octadecadienoic acid. This study is concerned with the chemistry of 12,13(S)-epoxy-9(Z),11-octadecadienoic acid in the presence of vertebrate serum albumins. Albumins were found to greatly enhance the aqueous half-life of the allene oxide, i.e. 14.1±1.8 min, 11.6±1.2 min and 4.8±0.5 min at 0 C in the presence of 15 mg/ml of bovine, human and equine serum albumins, respectively, as compared with ca. 33 sec in the absence of albumin. Degradation of allene oxide in the presence of bovine serum albumin led to the formation of a novel cyclization product, i.e. 3-oxo-2-pentyl-cyclopent-4-en-1-octanoic acid (12-oxo-10-phytoenoic acid, in which the relative configuration of the side chains attached to the five-membered ring istrans). Steric analysis of the cyclic derivative showed that the compound was largely racemic (ratio between enantiomers, 58∶42). 12-Oxo-10,15(Z)-phytodienoic acid, needed for reference purposes, was prepared by incubation of 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid with corn hydroperoxide dehydrase. Steric analysis showed that the 12-oxo-10,15(Z)-phytodienoic acid thus obtained was not optically pure but a mixture of enantiomers in a ratio of 82∶18. The first paper in this series is Reference 1.  相似文献   

9.
Seed from maize (corn) Zea mays provides a ready source of 9-lipoxygenase that oxidizes linoleic acid and linolenic acid into 9(S)-hydroperoxy-10(F), 12(Z)-octadecadienoic acid and 9(S)-hydroperoxy-10(E), 12(Z), 15(Z)-octadecatrienoic acid, respectively. Corn seed has a very active hydro-peroxide-decomposing enzyme, allene oxide synthase (AOS), which must be removed prior to oxidizing the fatty acid. A simple pH 4.5 treatment followed by centrifugation removes most of the AOS activity. Subsequent purification by ammonium sulfate fractional precipitation results in negligible improvement in 9-hydroperoxide formation. This facile alternative method of preparing 9-hydroperoxides has advantages over other commonly used plant lipoxygenases.  相似文献   

10.
Transformation of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid (13S-HPOD) to 13(S)-hydroxy-9(Z),11(E)-octadecadienoic acid (13S-HOD) under alkaline conditions (0.05 to 5 M KOH) occurred first-order with respect to 13S-HPOD concentration. Overall yield was about 80%. The energy of activation at higher concentrations (3.75 to 5 M KOH) was determined to be in the range of 15.3 to 15.6 kcal. Compared to the 13S-HPOD conversion, 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid (13S-HPOT) was converted at a faster rate to the corresponding hydroxy fatty acid (13S-HOT), with the reaction also being first-order. Chiral phase high-performance liquid chromatography demonstrated that in the transformation the stereochemistry of both the 13S-HPOD and 13S-HPOT reactants was preserved. Manometric analyses of the KOH/13S-HPOD reaction showed an uptake of gas, which amounted to 11% of the mols of reactant 13S-HPOD on the assumption that the gas was O2. As there is a theoretical loss of 1 oxygen atom in the reaction, the fate of this oxygen (possiblyvia active oxygen species) may involve reaction with 13S-HPOD/13SHOD to form the 20% by-products.  相似文献   

11.
During our ongoing project on the biosynthesis of R-(+)-octane-1,3-diol the metabolism of linoleic acid was investigated in stored apples after injection of [1-14C]-, [9,10,12,13-3H]-, 13C18- and unlabeled substrates. After different incubation periods the products were analyzed by gas chromatography-mass spectroscopy (MS), high-performance liquid chromatography-MS/MS, and HPLC-radiodetection. Water-soluble compounds and CO2 were the major products whereas 13(R)-hydroxy- and 13-keto-9(Z),11(E)-octadecadienoic acid, 9(S)-hydroxy-and 9-keto-10(E),12(Z)-octadecadienoic acid, and the stereoisomers of the 9,10,13- and 9,12,13-trihydroxyoctadecenoic acids were identified as the major metabolites found in the diethyl ether extracts. Hydroperoxides were not detected. The ratio of 9/13-hydroxy- and 9/13-keto-octadecadienoic acid was 1∶4 and 1∶10, respectively. Chiral phase HPLC of the methyl ester derivatives showed enantiomeric excesses of 75% (R) and 65% (S) for 13-hydroxy-9(Z),11(E)-octadecadienoic acid and 9-hydroxy-10(E),12(Z)-octadecadienoic acid, respectively. Enzymatically active homogenates from apples were able to convert unlabeled linoleic acid into the metabolites. Radiotracer experiments showed that the transformation products of linoleic acid were converted into (R)-octane-1,3-diol. 13(R)-Hydroxy-9(Z), 11(E)-octadecadienoic acid is probably formed in stored apples from 13-hydroperoxy-9(Z),11(E)-octadecadienoic acid. It is possible that the S-enantiomer of the hydroperoxide is primarily degraded by enzymatic side reactions, resulting in an enrichment of the R-enantiomer and thus leading to the formation of 13(R)-hydroxy-9(Z),11(E)-octadecadienoic acid.  相似文献   

12.
Methyl 11(R), 12(R)-epoxy-13(S)-hydroxy-9(Z)-octadecenoate (threo isomer) was generated from linoleic acid by the sequential action of an enzyme and two chemical reagents. Linoleic acid was treated with lipoxygenase to yield its corresponding hydroperoxide [13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoic acid]. After methylation with CH2N2, the hydroperoxide was treated with titanium (IV) isopropoxide [Ti(O-i-Pr)4] at 5°C for 1 h. The products were separated by normal-phase high-performance liquid chromatography and characterized with gas chromatography-mass spectrometry, infrared spectroscopy, and nuclear magnetic resonance spectroscopy. Approximately 30% of the product was methyl 13(S)-hydroxy-9(Z), 11(E)-octadecadienoate. Over 60% of the isolated product was methyl 11(R), 12(R)-epoxy-13(S)-hydroxy-9(Z)-octadecenoate. After quenching Ti(O-i-Pr)4 with water, the spent catalyst could be removed from the fatty products by partitioning between CH2Cl2 and water. These results demonstrate that Ti(O-i-Pr)4 selectively promotes the formation of an α-epoxide with the threo configuration. It was critically important to start with dry methyl 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoate because the presence of small amounts of water in the reaction medium resulted in the complete hydrolysis of epoxy alcohol to trihydroxy products.  相似文献   

13.
12-Oxo-10,15(Z)-phytodienoic acid biosynthesized from 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid using a preparation of corn (Zea mays L) hydroperoxide dehydrase recently was found to be a mixture of enantiomers in a ratio of 82∶18 (Hamberg, M., and Hughes, M.A. (1988)Lipids 23, 469–475). In this work, 12-oxophytodienoic acid and (+)-7-iso-jasmonic acid were converted into a common derivative, methyl 3-hydroxy-2-pentyl-cyclopentane-1-octanoate. From gas liquid chromatographic analysis of the (−)-menthoxycarbonyl derivative of methyl 3-hydroxy-2-pentyl-cyclopentane-1-octanoates prepared from 12-oxophytodienoic acid and (+)-7-iso-jasmonic acid, it could be deduced that the major enantiomer of 12-oxophytodienoic acid had the 9(S),13(S) configuration. Therefore, in the major enantiomer of 12-oxophytodienoic acid, the configurations of the side chainbearing carbons are identical to the configurations of the corresponding carbons of (+)-7-iso-jasmonic acid, thus giving support to previous studies indicating that 12-oxophytodienoic acid serves as the precursor of (+)-7-iso-jasmonic acid in plant tissue. When absolute configurations of C-9 and C-13 are not specifically indicated, phytonoic acid is used to denote 2-pentyl-cyclopentane-1-octanoic acid in which the two side chains have thecis relationship, whereas phytonoic acid (trans isomer) denotes 2-pentyl-cyclopentane-1-octanoic acid in which the two side chains have thetrans relationship.  相似文献   

14.
α-Tocopherol and methyl (9Z, 11E)-(S)-13-hydroperoxy-9, 11-octadecadienoate (13-MeLOOH) were allowed to stand at 100°C in bulk phase. The products were isolated and identified as methyl 13-hydroxyoctadecadienoate (1), stereoisomers of methyl 9,11,13-octadecatrienoate (2), methyl 13-oxo-9, 11-octadecadienoate (3), epoxy dimers of methyl linoleate with an ether bond (4), a mixture of methyl (E)-12, 13-epoxy-9-(α-tocopheroxy)-10-octadecenoates and methyl (E)-12, 13-epoxy-9-(α-tocopheroxy)-11-(α-tocopheroxy)-9-octadecenoates (5), a mixture of methyl 9-(α-tocopheroxy)-10,12-octadecadienoates and methyl 13-(α-tocopheroxy)-9, 11-octadecadienoates (6), α-tocopherol spirodiene dimer (7), and α-tocopherol trimer (8). α-Tocopherol and 13-MeLOOH were dissolved in methyl myristate, and the thermal decomposition rate and the distributions of reaction products formed from α-tocopherol and 13-MeLOOH were analyzed. α-Tocopherol disappeared during the first 20 min, and the main products of α-tocopherol were 5 and 6 with the accumulation of 1–4 which were the products of 13-MeLOOH. The results indicate that the alkyl and alkoxyl radicals from the thermal decomposition of 13-MeLOOH could be trapped by α-tocopherol to produce 5 and 6. The reaction products of α-tocopherol during the thermal oxidation of methyl linoleate were compounds 6 and 7. Since the radical flux during the autoxidation might be low, the excess α-tocopheroxyl radical reacted with each other to form 7.  相似文献   

15.
3-Oxalinolenic acid (3-oxa-9(Z), 12(Z), 15(Z)-octadecatrienoic acid or (6(Z), 9(Z), 12(Z)-pentadecatrienyloxy)acetic acid) was synthesized from 5(Z), 8(Z), 11(Z), 14(Z), 17(Z)-eicosapentaenoic acid by a sequence involving the C15 aldehyde 3(Z), 6(Z), 9(Z), 12(Z)-pentadecatetraenal as a key intermediate. Conversion of the aldehyde by isomerization and two steps of reduction afforded 6(Z), 9(Z), 12(Z)-pentadecatrienol, which was coupled to bromoacetate to afford after purification by HPLC >99%-pure 3-oxalinolenic acid in 10–15% overall yield. 3-Oxalinolenic acid was efficiently oxygenated by soybean lipoxygenase-1 into 3-oxa-13(S)-hydroperoxy-9(Z), 11(E), 15(Z)-octadecatrienoic acid, and this hydroperoxide could be further converted chemically into 3-oxa-13(S)-hydroxy-9(Z), 11(E), 15(Z)-octadecatrienoic acid and 3-oxa-13-oxo-9(Z), 11(E), 15(Z)-octadecatrienoic acid. The 3-oxa-hydroperoxide also served as the substrate for the plant enzymes allene oxide synthase, divinyl ether synthase, and hydroperoxide lyase to produce 3-oxa-12-oxo-10, 15(Z)-phytodienoic acid and other 3-oxa-oxylipins that were characterized by MS, 3-Oxalinolenic acid was not oxygenated by 9-lipoxygenase from tomato but was converted at a slow rate into 3-oxa-9(S)-hydroperoxy-10(E), 12(Z), 15(Z)-octadecatrienoic acid by recombinant maize 9-lipoxygenase. Recombinant α-dioxygenase-1 from Arabidopsis thaliana catalyzed the conversion of 3-oxalinolenic acid into a 2-hydroperoxide, which underwent spontaneous degradation into a mixture of 6,9,12-pentadecatrienol and 6,9,12-pentadecatrienyl formate. A novel α-dioxygenase from the moss Physcomitrella patens was cloned and expressed and was found to display the same activity with 3-oxalinolenic acid as Arabidopsis thaliana α-dioxygenase-1. Lipoxygenase-generated 3-oxa-oxylipins are resistant toward β-oxidation and have the potential for displaying enhanced biological activity in situations where activity is limited by metabolic degradation.  相似文献   

16.
We investigated the catalytic and kinetic properties of allene oxide synthase (AOS; E.C. 3.2.1.92) from flaxseed (Linum usitatissimum L.). Both Michaelis constant and maximal initial velocity for the conversion of 9(S)-and 13(S)-hydroper-oxides of linoleic and linolenic acid were determined by a photometric assay, 13(S)-Hydroperoxy-9(Z), 11(E)-octadecadienoic acid [13(S)-HPOD] as the most effective substrate was converted at 116.9±5.8 nkat/mg protein by the flax enzyme extract. The enzyme was also incubated with a series of variable conjugated hydroperoxy dienyladipates. Substrates with a shape similar to the natural hydroperoxides showed the best reactivity. Monoenoic substrates as oleic acid hydroperoxides were not converted by the enzyme. In contrast, 12-hydroperoxy-9(Z), 13(E)-octadecadienoic acid was a strong competitive inhibitor for AOS catalyzed degradation of 13(S)-HPOD. The inhibitor constant was determined to be 0.09 μM. Based on these results, we concluded that allene oxide synthase requires conjugated diene hydroperoxides for successful catalysis. Studying the enantiomeric preference of the enzyme, we found that AOS was also able to metabolize (R)-configurated fatty acid hydroperoxides. Conversion of these substrates into labile allene oxides was confirmed by steric analysis of the stable α-ketol hydrolysis products.  相似文献   

17.
α-Tocopherol was reacted with alkyl and alkylperoxyl radicals at 37°C in bulk phase. The lipid-free radicals were generated by the reaction of methyl linoleate with the free radical initiator, 2,2′-azobis(2,4-dimethylvaleronitrile) (AMVN) under air-insufficient conditions. The products were isolated by high-performance liquid chromatography. Their structures were identified as 2-(α-tocopheroxy)-2,4-dimethylvaleronitrile (1), a mixture of methyl 9-(8a-peroxy-α-tocopherone)-10(E),12(Z)-octadecadienoate and methyl 13-(8a-peroxy-α-tocopherone)-9(Z),11(E)-octadecadienoate (2), methyl 9-(α-tocopheroxy)-10(E),12(Z)-octadecadienoate (3a), methyl 13-(α-tocopheroxy)-9(Z),11(E)-octadecadienoate (3b), α-tocopherol spirodiene dimer (4) and α-tocopherol trimer (5). When methyl linoleate containing α-tocopherol was oxidized with AMVN under airsufficient conditions, the main products were 8a-alkyl-peroxy-α-tocopherones (2). In addition to these compounds, 6-O-alkyl-α-tocopherols (1, 3a and 3b) were formed when the reaction was carried out under air-insufficient conditions. The results indicate that α-tocopherol can react with both alkyl and alkylperoxyl radicals during the autoxidation of polyunsaturated lipids.  相似文献   

18.
Niobium (V) ethoxide [Nb(OC2H5)5] catalyzed the rearrangement of methyl 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoate (Me-HPODE) to epoxy hydroxy isomers. At low temperature (5°C) in aprotic solvent, Me-HPODE was converted to the diastereomeric α, β-epoxy alcohols, methyl 11(R,S),12(R,S)-epoxy-13(S)-hydroxy-9(Z)octadecenoate. These products are referred to as oxylipids and structurally resemble those obtained from the vanadium- and epoxygenase-catalyzed rearrangement of Me-HPODE but are distinct from products obtained from ferrous iron-, hematin-, and hemoglobin-catalyzed rearrangements. Because the product of the niobium-catalyzed rearrangement of Me-HPODE was predominantly the erythro diastereomer, the rearrangement is distinguished from that produced by a titanium catalyst, in which the threo diastereomer [methyl 11(R), 12(R)-epoxy-13(S)-hydroxy-9(Z)-octadecenoate] predominates, and from that produced by a vanadium catalyst, in which both diastereomers are produced in equal proportion. The synthesis of alcohol epoxide by Nb(OC2H5)5 was inhibited by traces of water, but inclusion of molecular sieves in the reaction medium did not improve yield, as the alcohol epoxide rearranged to ketonic materials.  相似文献   

19.
Incubation of [1-14C]linoleic acid with an enzyme preparation obtained from the red algaLithothamnion corallioides Crouan resulted in the formation of 11-hydroxy-9(Z),12(Z)-octadecadienoic acid as well as smaller amounts of 9-hydroxy-10(E),12(Z)-octadecadienoic acid, 13-hydroxy-9(Z),11(E)-octadecadienoic acid and 11-keto-9(Z),12(Z)-octadecadienoic acid. Steric analysis showed that the 11-hydroxyoctadecadienoic acid had the (R) configuration. The 9- and 13-hydroxyoctadecadienoic acids were not optically pure, but were due to mixtures of 75% (R) and 25% (S) enantiomers (9-hydroxyoctadecadienoate), and 24% (R) and 76% (S) enantiomers (13-hydroxy-octadecadienoate). 11-Hydroxyoctadecadienoic acid was unstable at acidic pH. In acidified water, equal parts of 9(R,S)-hydroxy-10(E),12(Z)-octadecadienoate and 13(R,S)-hydroxy-9(Z),11(E)-octadecadienoate, plus smaller amounts of the corresponding (E),(E) isomers were produced. In aprotic solvents, acid treatment resulted in dehydration and in the formation of equal amounts of 8,10,12- and 9,11,13-octadecatrienoates. The enzymatic conversion of linoleic acid into the hydroxyoctadecadienoic acids and the ketooctadecadienoic acid was oxygen-dependent; however, inhibitor experiments indicated that neither lipoxygenase nor cytochrome P-450 were involved in the conversion. This conclusion was supported by experiments with18O2 and H2 18O, which demonstrated that the hydroxyl oxygen of the hydroxy-octadecadienoic acids and the keto oxygen of the 11-ketooctadecadienoic acid were derived from water and not from molecular oxygen. The term “oxylipin” was introduced recently (ref. 1) as an encompassing term for oxygenated compounds which are formed from fatty acids by reaction(s) involving at least one step of mono- or dixoygenase-catalyzed oxygenation.  相似文献   

20.
α-Tocopherol was reacted with methyl linoleateperoxyl radicals at 37°C. The peroxyl radicals were generated by the reaction of methyl linoleate with a free radical initiator, 2,2′-azobis(2,4-dimethylvaleronitrile). The primary products of α-tocopherol with methyl linoleate-peroxyl radicals were isolated by reversephase and normal-phase high performance liquid chromatography (HPLC), and their structures were characterized by ultraviolet (UV), infrared (IR),1H and13C nuclear magnetic resonance (NMR) and mass spectrometry (MS). There were four stereoisomers of methyl 13-(8a-peroxy-α-tocopherone)-9(Z),11(E)-octadecadienoate and four stereoisomers of methyl9-(8a-peroxy-α-tocopherone)-10(E),12(Z)-octadecadienoate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号