首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用共沉淀法制备了一系列不同n(Cu)∶n(Ru)的Ru-Cu/AlOOH催化剂,利用XRD、TG-DTA、TEM、N2吸附-脱附和XPS等方法对催化剂进行了表征,并对该系列催化剂进行了苯选择加氢反应测试。实验结果表明,在反应温度150℃、氢气压力4.5 MPa、搅拌转速1 200 r/min、ZnSO4浓度0.40 mol/L的条件下,n(Cu)∶n(Ru)=0.12的Ru-Cu/AlOOH催化剂具有较高的活性和选择性,当反应17 min时,环己烯收率达到最高值(46.6%)。Ru-Cu/AlOOH催化剂良好的活性和选择性主要归结于活性组分的高度分散、载体良好的亲水性能以及助剂Cu对催化剂活性表面的调变作用。  相似文献   

2.
采用共沉淀法和浸渍-沉淀法分别制备了Ru负载量相同的非负载型Ru-Zn催化剂和负载型Ru-Zn@ZrO_2催化剂,并在ZrO_2作非负载型Ru-Zn催化剂分散剂、且其用量与负载型Ru-Zn@ZrO_2催化剂的载体ZrO_2用量相同的条件下,考察了它们催化苯选择加氢制环己烯性能的差异。并通过X-射线衍射(XRD)、透射电镜(TEM)、N2-物理吸附、X-射线荧光光谱(XRF)和X-射线光电子能谱(XPS)等手段对加氢前后催化剂进行了表征。结果表明,ZrO_2作分散剂时加氢过程中非负载型Ru-Zn催化剂可以比负载型Ru-Zn@ZrO_2催化剂从浆液中吸附更多Zn~(2+)。吸附的Zn~(2+)可以转移金属Ru上的电子,使Ru变为有利环己烯生成的缺电子的Ruδ+物种,而且还可以占据不适宜环己烯生成的强Ru活性位。同时ZrO_2作分散剂的非负载型Ru-Zn催化剂具有4.0nm适宜苯选择加氢制环己烯的最佳Ru粒径,而负载型Ru-Zn@ZrO_2催化剂的粒径仅2.7nm。因此,ZrO_2作分散剂的非负载型Ru-Zn催化剂得到了61.0%的最高环己烯收率,而负载型Ru-Zn@ZrO_2催化剂的最高环己烯收率仅42.7%。实验表明,ZrO_2作分散剂的非负载型Ru-Zn催化剂具有良好的稳定性和重复使用性。  相似文献   

3.
环己烯作为一种重要的有机化工原料,具有广泛用途。综述了苯选择性加氢制环己烯的反应机理、负载型催化剂载体的选择、催化剂的制备方法及催化剂的改性,展望了苯选择性加氢制环己烯负载型催化剂的研究发展。  相似文献   

4.
Ru/MCM-41催化苯选择加氢制环己烯   总被引:1,自引:0,他引:1  
采用浸渍法制备了Ru/MCM-41催化剂,用于催化苯选择加氢制环己烯反应.为提高环己烯选择性,向催化剂中加入Zn助剂,考察了不同Zn母体对Ru/MCM-41催化性能的影响.结果表明,Zn的加人影响了Ru的还原,从而影响了其催化性能.当使用ZnCl2或Zn(OAc)2为Zn母体时,Ru容易被还原,Ru/MCM-41催化剂表面活性中心数量增加,从而使其催化活性增加;当使用Zn(NO3)2为Zn母体时,部分Ru不易被还原,相应的Ru/MCM-41催化活性有所降低;ZnSO4为Zn母体时,ZnSO4的存在使MCM-41表面显酸性,在催化苯选择加氢反应中,由于表面酸中心和Ru加氢中心的共同存在,使得苯加氢反应存在两条路径,因此反应速率增加,苯转化率增加,并且由于表面酸中心有利于环己烯的吸附,从而易使其发生深度加氢.  相似文献   

5.
《石油化工》2015,44(9):1066
采用浸渍还原法制备Ru-B/ZrO2催化剂,利用XRD、XRF、ICP-AES、TEM和N2吸附-脱附等方法对催化剂进行表征,考察了ZrO2比表面积对Ru-B/ZrO2催化剂的结构及其对苯选择加氢制环己烯反应催化性能的影响。表征结果显示,催化剂中的ZrO以单斜晶相存在,Ru以非晶态Ru-B合金形式存在;以比表面积34 m2/g的ZrO2为载体制备的Ru-B/ZrO2催化剂,其活性组分配位环境均一,且具有适宜的比表面积和孔结构。实验结果表明,采用该催化剂催化苯选择加氢制环己烯反应,环己烯选择性优于以比表面积为9 m2/g和87 m2/g的ZrO2为载体制备的Ru-B/ZrO2催化剂。在H2压力5 MPa、150℃和搅拌转速1 400 r/min的条件下,该催化剂上环己烯收率最高达61.1%。  相似文献   

6.
采用共沉淀法制备了Ru-Zn催化剂,并在连续中试装置上考察了其催化苯选择加氢制环己烯的性能。实验结果表明,Ru-Zn催化剂中Zn含量为5.4%(w),Ru微晶尺寸为5.0 nm。3480 h内该催化剂上苯转化率稳定在40%左右,环己烯的选择性和收率分别保持在80%和32%左右。苯中混有的萃取剂N,N-二甲基乙酰胺可导致催化剂中毒,因为它在酸性ZnSO4溶液中可分解为乙酸和二甲胺。二甲胺可与浆液中的ZnSO4反应生成(Zn(OH)2)3(ZnSO4)(H2O)5和二甲胺。化学吸附在催化剂表面的(Zn(OH)2)3(ZnSO4)(H2O)5对提高催化剂的环己烯选择性起关键作用,但过量的(Zn(OH)2)3(ZnSO4)(H2O)5可导致催化剂失活,向浆液中添加浓H2SO4溶液溶解部分催化剂表面的(Zn(OH)2)3(ZnSO4)(H2O)5可恢复催化剂性能。  相似文献   

7.
苯选择加氢制环己烯的研究进展   总被引:15,自引:0,他引:15  
综述了 Ru催化剂上苯液相选择加氢制环己烯的研究进展 ,着重介绍了化学混合法制备的 Ru催化剂的特征及对苯液相选择加氢制环己烯的影响  相似文献   

8.
沉淀法制备苯选择加氢制环己烯Ru-Zn催化剂的表征   总被引:7,自引:0,他引:7  
沉淀法制备的Ru-Zn体系用于苯选择加氢制环己烯,苯转化40%时,环己烯选择性达85 5%。XRD研究证实了Zn和Ru以固溶体形式存在。用噻吩吸附发现,10-6数量级的硫对选择性产生明显影响。XRD半高宽法测得Ru微晶粒径3~5nm。Ru-Zn催化剂BET比表面积62 5m2/g,平均孔径16 05nm,具有两端开放的管状毛细孔结构,反应可利用的孔分布均匀。并与浸渍法制备的Ru-Zn/SiO2对比,探讨催化剂的活性相,活性中心性质,及比表面积、孔性质与活性选择性的关系。  相似文献   

9.
陈燕  蒋景阳  杨玉川  金子林 《石油化工》2004,33(Z1):1004-1005
研究了以Ru3(CO)12为前体,采用热分解法在苯溶剂中制备SiO2负载的金属Ru催化剂的方法,得到高活性的纳米级Ru/SiO2苯加氢催化剂.结果表明在底物和Ru摩尔比为1000,5.0MPaH2,403K,反应时间10min的反应条件下,苯的转化率和环己烷选择性都达到100%,反应转化因子(TOF值)达到6000 mol/(mol·h);反应后催化剂与产物易于分离循环,催化剂使用寿命长,循环使用20次催化活性保持不变.  相似文献   

10.
采用等体积浸渍法制备了用于苯选择加氢制环己烯的Ru/MCM-41催化剂,对其进行了X射线衍射、透射电镜、程序升温还原和原位漫反射红外光谱等手段表征,以确定MCM-41表面Ru物种的存在状态.结果发现,Ru物种颗粒均匀地分散在MCM-41孔道内,平均粒径为2.1 nm.在MCM-41表面存在Ru0、RuOx、RuClO和RuCl3等Ru物种;并且随着助剂Zn的加入,RuOx、RuClO等物种变得不稳定,而对于Ru0的影响较小.Ru0的加氢活性较强,易于使苯发生深度加氢得到环己烷;而RuOx、RuClO的加氢活性较弱,更易得到环己烯.Zn的加入使Ru/MCM-41催化苯选择加氢制环己烯的活性和选择性同时下降.  相似文献   

11.
《精细石油化工》2017,(4):24-27
采用浸渍法制备Ru-Sn-B/Al_2O_3催化剂,应用于对苯二甲酸加氢反应制备对苯二甲醇。考察了催化剂制备方法、加氢反应温度和反应压力以及催化剂用量对加氢反应的影响。实验结果表明,合适的催化剂制备方法是采用Ru、Sn共浸渍后由NaBH_4还原制备,优化的反应条件是:m(催化剂)∶m(对苯二甲酸)∶m(H_2O)=1∶4.0∶40,反应温度230℃,反应压力10.0 MPa,反应5.0h,对苯二甲酸转化率达到100%,对苯二甲醇摩尔收率为88.9%。催化剂使用寿命考察结果表明,Ru-Sn-B/Al2O3催化剂具有很好的稳定性。  相似文献   

12.
介绍3种环己烯合成方法。包括用固体酸作催化剂,环己醇催化脱水制备环己烯,如以SO4^2-/TiO2-SiO2为固体酸催化剂,在反应温度170℃、反应时间1h条件下,环己烯收率达90%;苯在钌系及Ni/海泡石催化剂作用下,选择加氢制备环己烯,在反应温度140℃、压力4。5MPa条件下,苯的转化率为40%,环己烯选择性达85.3%;还有环己烷氧化脱氢制备环己烯,以三氯化铈/浮石为催化剂,空气作氧化剂,在反应温度440~450℃条件下氧化脱氢,环己烷转化率为13.5%,而环己烯收率可达91%。并指出了这3种环己烯合成方法存在的问题和研究方向。  相似文献   

13.
以活性炭(AC)为载体,采用浸渍法制备了Ru/AC催化剂,并应用于邻苯二胺(o-PDA)催化加氢制1,2-环己二胺的反应。考察了Ru负载量、溶剂种类、反应温度、添加剂Na NO2用量、水用量等反应条件对加氢性能的影响。实验结果表明,适宜的反应条件为:温度170℃,压力8.0 MPa,o-PDA 16.0 g,异丙醇75 m L,Na NO2 0.50 g,水4.0 m L,5%(w)Ru/AC催化剂3.0 g;在此条件下,o-PDA的转化率为99.5%,1,2-环己二胺的收率为86.3%。5%(w)Ru/AC催化剂循环使用5次后,o-PDA的转化率由99.5%降至85.7%,1,2-环己二胺的选择性维持在85%以上。循环使用5次后的催化剂经洗涤、干燥和还原活化后,活性恢复,可重复使用。  相似文献   

14.
宁剑波  刘菁  路芳  徐杰 《石油化工》2005,34(Z1):459-461
采用微乳技术制备了纳米钌基催化剂,通过XRD,TEM,XPS等表征分析,金属粒子大小约3.9 nm、高度分散且呈无定形态.将该催化剂用于苯选择加氢,TOF(H2)达0.76 s-1,为旭化成专利报道钌黑沉淀法催化剂活性的10倍.微乳法制备的催化剂对反应体系中Zn2+的吸附量增加,有利于催化剂表面水膜的形成,使催化剂对环己烯的收率达到42%.此外,还讨论了反应条件对微乳法制备的催化剂加氢性能的影响.  相似文献   

15.
采用化学键连与溶胶-凝胶包容法制备锚链固定的多相化Salen-Mn(Ⅲ)催化剂。利用傅里叶变换红外光谱和核磁共振氢谱方法对催化剂及其前体进行表征。考察催化剂制备条件及环氧化反应条件对催化剂性能的影响,得到催化剂制备的优化条件及最佳环氧化反应条件。采用最佳条件下制备的催化剂催化环己烯的环氧化反应,当催化剂的摩尔分数为0.250%、n(异丁醛)∶n(环己烯)=2.5、环氧化反应温度35℃、环氧化反应9h时,环己烯的转化率达99.7%,环氧环己烷的选择性达88.8%。  相似文献   

16.
唐雷  石秋杰  谌伟庆 《石油化工》2005,34(12):1140-1144
以酸改性海泡石负载的钌-硼合金为催化剂,采用苯选择加氢制环己烯为探针反应,考察了反应压力、温度、水与苯体积比、催化剂用量等因素对反应的影响;并与以未经酸改性的海泡石为载体的催化剂进行了对比;采用程序升温脱附(TPD)、H2-TPD、环己烷-TPD、环己烯-TPD、程序升温还原等方法对催化剂进行了表征。实验结果表明,苯选择加氢制环己烯的最佳反应条件为:393 K、3.5 MPa、苯10 mL、水与苯体积比1、催化剂用量0.1 g;以酸改性海泡石为载体的钌-硼合金催化剂的活性和选择性均高于以未经酸改性的海泡石为载体的催化剂,这主要是由于前者具有更大的比表面积和孔径,环己烯更易脱附,从而减小其深度加氢的几率。  相似文献   

17.
以过碘酸钠为氧化聚合诱导剂,在微酸性条件下(pH=5.0)合成了聚多巴胺修饰的分子筛载体。采用环己烷-水双溶剂法,制备了聚多巴胺修饰的SBA-15负载钌催化剂,并对催化剂进行了表征。实验结果表明,聚多巴胺能显著提高催化剂的亲水性,修饰后的催化剂在苯部分加氢反应中表现出高环己烯选择性;采用该催化剂,苯转化率为63.2%时,环己烯收率可达51.8%;聚多巴胺的引入不会影响SBA-15长程有序的介孔结构,催化剂具有适中的比表面积和良好的钌分散度。  相似文献   

18.
路芳  刘菁  宁剑波  徐杰 《石油化工》2005,34(Z1):462-464
用含ZnO的双组分氧化物为载体制备苯选择加氢钌基催化剂,详细研究了双组分氧化物组成、载体制备条件、后处理过程等因素对催化性能的影响.结果表明,用双组分氧化物Al2O3/ZnO,ZrO2/ZnO,Fe2O3/ZnO,SiO2/ZnO为载体制备的催化剂比分别以单组分氧化物SiO2,ZrO2,Al2O3等为载体制备的催化剂具有更高的活性和选择性.其中ZrO2/ZnO为载体的催化剂显示最好的结果,苯转化率为26%时环己烯选择性为81%.  相似文献   

19.
La_2O_3对NiO/HMCM-56催化剂C_9~+重芳烃加氢脱烷基性能的影响   总被引:1,自引:1,他引:0  
采用等体积浸渍法制备了NiO质量分数6%、La2O3添加量不同的La2O3-NiO/HMCM-56催化剂,考察了La2O3添加量和工艺条件对C9+重芳烃加氢脱烷基反应性能的影响,并采用XRD、H2-TPR、NH3-TPD和BET等技术对催化剂的物化性质进行了研究。实验结果表明,添加La2O3可以提高NiO在催化剂上的分散性,改变催化剂的酸性分布与酸量,改善了催化剂的加氢脱烷基性能;在实验范围内,随La2O3添加量的增加,加氢脱烷基反应的深度增加,C9+重芳烃转化率及苯、甲苯和二甲苯(统称BTX)收率增大,但二甲苯的选择性在La2O3添加量(质量分数)为3%时达到最大。采用La2O3添加量为3%的La2O3-NiO/HMCM-56催化剂,在460℃、3.0MPa、重量空速3.62h-1及V(H2)∶V(C9+)=1600的条件下,C+9重芳烃的转化率、BTX收率及BTX选择性分别为75.23%,63.36%,84.23%。  相似文献   

20.
通过沉淀浸渍法制备了S2O2 -8/ZrO2-WO3复合固体超强酸催化剂,采用Hammett指示剂法、FTIR、XRD和BET等手段对其进行了表征;以环己醇液相脱水制备环己烯为探针反应,通过正交实验优化了S2O2 -8/ZrO2-WO3催化剂的制备条件和反应条件.实验结果表明,在w(H2WO4)=10.0%(基于Zr(OH)4粉末)、(NH4)2S2O8溶液浓度为0.75 mol/L、浸渍时间为18 h、焙烧温度为550 ℃的条件下制备的S2O2 -8/ZrO2-WO3催化剂表现出良好的催化性能;采用该催化剂制备环己烯的优化反应条件为:催化剂用量为环己醇质量的2.77%、反应温度为180~185 ℃、反应时间为60 min,在此条件下环己烯平均收率可达96.57%.该工艺具有绿色、安全、操作简单和收率高等优点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号