首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. M. Rozati  T. Ganj 《Renewable Energy》2004,29(10):1665-1669
Transparent conducting fluorine doped indium oxide (In2O3:F) thin films have been deposited on Corning 7059 glass substrates by the spray pyrolysis technique. The structural, electrical, and optical properties of these films were investigated as a function of substrate temperature. The X-ray diffraction pattern of the films deposited at lower substrate temperature (Ts=300 °C) showed no peaks of In2O3:F. In the useful range for deposition (i.e. 425–600 °C), the orientation of the films was predominantly [400]. For the 4500 Å thick In2O3:F deposited with an F content of 10-wt%, the minimum sheet resistance was 120 Ω and average transmission in the visible wavelength rang (400–700 nm) was 88%.  相似文献   

2.
Following the procedure by Sawada et al. (Thin Solid Films 409 (2002) 46), high-quality SnO2:F films were grown on glass substrates at relatively low temperatures of 325–340°C by intermittent spray pyrolysis deposition using a perfume atomizer for cosmetics use. Even though the substrate temperature is low, as-deposited films show a high optical transmittance of 92% in the visible range, a low electric resistivity of 5.8×10−4 Ω cm and a high Hall mobility of 28 cm2/V s. The F/Sn atomic ratio (0.0074) in the films is low in comparison with the value (0.5) in the sprayed solution. The carrier density in the film is approximately equal to the F-ion density, suggesting that most of the F-ions effectively function as active dopants. Films’ transmittance and resistivity show little change after a 450°C 60 min heat treatment in the atmosphere, evidencing a high heat resistance. The SnO2:F films obtained in this work remove the difficulty to improve the figure of merit at low synthesis temperatures.  相似文献   

3.
Nickel oxide (NiOx) thin films were prepared by the chemical deposition method (solution growth) on two kinds of substrates: (1) glass and (2) glass/SnO2 : F. Films were thermally treated at 200°C for 10 min in atmosphere. The texture, microstructure and composition were examined by optical microscopy, X-ray diffraction patterns (XRD) and X-ray photoelectron spectroscopy (XPS) analysis of the surface layer. The films exhibited anode electrochromism. The optical properties of the bleached and colored state were examined with transmittance spectroscopy in the visible region and reflectance FTIR spectroscopy. An electrochromic test device (ECTD), consisting of SnO2/NiOx/NaOH–H2O/SnO2, was assembled and tested by cyclic voltammetry combined with a simultaneous recording of the change of transparency at λ=670 nm. The coloration efficiency was evaluated to be 24.3 cm2/C. The spontaneous ex-situ change of coloration with time of the colored and bleached NiOx/SnO2/glass was also examined.  相似文献   

4.
Various inorganic salt hydrates have been studied as a latent heat storage medium. A super-absorbent polymer (SAP) made from an acrylic acid copolymer is proposed as an effective thickener to prevent undesirable phase separation of the high hydrate inorganic salts (Na2SO4· 10H2O, Na2HPO4·12H2O, Na2CO3·10H2O). Most of these materials can be stabilize by the addition of 3 to 5 wt% SAP as a thickener. For the low hydrate inorganic salts (CH3COONa· 3H2O, Na2S2O3·5H2O), carboxymethyl cellulose (CMC) is found to be an effective thickener. Similarly, the phase separation of the low hydrate salts can be prevented by the addition of 2 to 4 wt% thickener. To overcome the supercooling of the thickened phase change materials, various potential nucleators have been evaluated. For the thickened Glauber's salt, borax reduces supercooling of the salt from 15 to 3–4°C. Three different powders of carbon (1.5–6.7 μm), copper (1.5–2.5 μm) and titanum oxide (2–200 μm) are found to reduce the supercooling of thickened Na2HPO4·12H2O. Also, the supercooling of thickened CH3COONa·3H2O is reduced from 20 to 2–3°C by adding 2 wt% potassium sulfate. New compositions for preventing supercooling and phase separation of PCMs are developed in the temperature range 30–60°C: Glauber's salt/SAP/borax (94/3/3 wt%, Tm = 35°C), Na2CO3·10H2/SAP/Sr(OH)2 (93/3/4 wt%, Tm = 32°C), Na2HPO4·12H2O (92.8/3.5/3.7 wt%, Tm = 35°C), Na2S2O3·5H2O/CMC/ SrSO4 (92/3/5 wt%, Tm = 48°C), CH3COONa·3H2O/CMC/K2SO4 (95/3/2 wt%, Tm = 58°C).  相似文献   

5.
Thin films of CdTe semiconductors were prepared by electrodeposition technique in aqueous solutions. The deposition mechanism was investigated by cyclic voltammetry. The potential regions for the formation of the n-CdTe and p-CdTe films were determined. The structure, composition and morphology characteristics of as-deposited thin films of CdTe grown on SnO2/glass and CdS/SnO2/glass were investigated by XRD, EDAX and SEM techniques. The optical properties were measured to determine the absorption coefficient and band gap values. The as-deposited CdTe films grown on SnO2/glass contained free Te while those grown on CdS/SnO2/Glass did not contain this phase. The CdTe has the cubic structure with strong (111) orientation. The EDAX analysis showed a nearly stiochiometric Cd:Te ratio. The band gap has a value of 1.48 eV, which is in a good accordance with those reported in the literature. The effect of annealing at 350 and 400°C after CdCl2 treatment on the structure and morphology was also examined.  相似文献   

6.
In this study, highly stabilized hydrogenated amorphous silicon films and their solar cells were developed. The films were fabricated using the triode deposition system, where a mesh was installed between the cathode and the anode (substrate) in a plasma-enhanced chemical vapor deposition system. At a substrate temperature of 250 °C, the hydrogen concentration of the resulting film (Si–H=4.0 at%, Si–H2<1×1020 cm−3) was significantly less than that of conventionally prepared films. The films were used to develop the i-layers of solar cells that exhibited a significantly low degradation ratio of 7.96%.  相似文献   

7.
A novel solution method was developed for the deposition of transparent ZnO film from aqueous solution, integrating the ultrasonic irradiation with the stepwise chemical deposition at relatively high temperature (>100 °C). Obtained ZnO films exhibited high crystallinity, highly preferential orientation along the c-axis, smooth and compact morphology, and high transmittance in the visible band (>80%). The deposition temperature and ultrasonic irradiation were found to have significant influence on the phase purity, crystallinity, grain size, and morphology of ZnO films. While the lower temperature (120 °C) was inefficient to eliminate the intermediate phase of Zn(OH)2, the higher deposition temperature and ultrasonic irradiation were found powerful to improve the crystalline degree and the quality of film. Mechanism analysis indicated that the rapid water evaporation in the precursor layer and the rapid decomposition of zinc–ammonia complex during the high-temperature deposition process were indispensable for the growth of high-quality ZnO films.  相似文献   

8.
Aluminium doped ZnO films have been developed by RF-magnetron sputtering at 350 °C substrate temperature on glass substrate and commercially available SnO2-coated glass substrate. The developed ZnO and SnO2/ZnO films can be used as the substrates of microcrystalline silicon based solar cell. The electrical, optical properties and surface morphologies of ZnO film and SnO2/ZnO bi-layer films have been investigated and they are compared with the commercially available SnO2-coated glass substrate. The resistivities of ZnO and SnO2 films are comparable (10−4 Ω-cm). Surface morphologies of different transparent conducting oxide coated substrates before and after H-plasma exposure were studied by scanning electron microscopy. The optical transmission of ZnO, SnO2/ZnO and SnO2 films are comparable and varies from 85 to 90% in the visible region. The optical transmission reduces drastically to less than 20% in SnO2 films and for ZnO film it remains almost unchanged after H-plasma exposure. For SnO2/ZnO film transmission decreases slightly but remains considerably high (80%). The performance of microcrystalline silicon solar cells fabricated on different transparent conducting oxides as substrates (ZnO/glass, SnO2/glass and ZnO/SnO2/glass double layer) is investigated in detail.  相似文献   

9.
Scale-up of a-Si:H-based thin film applications such as solar cells, entirely or partly prepared by hot-wire chemical vapor deposition (HWCVD), requires research on the deposition process in a large-area HWCVD system. The influence of gas supply and filament geometry on thickness uniformity has already been reported, but their influence on material quality is systematically studied for the first time. The optimization of deposition parameters for obtaining best material quality in our large-area HWCVD system resulted in an optimum filament temperature, Tfil≈1600°C, pressure, p=8 mTorr and silane flow, F(SiH4)=100 sccm, keeping the substrate temperature at TS=200°C. A special gas supply (gas shower with tiny holes of uniform size) and a filament grid, consisting of six filaments with an interfilament distance, dfil=4 cm were used. The optimum filament-to-substrate distance was found to be dfil–S=8.4 cm. While studying the influence of different dfil and gas supply configurations on the material quality, the above-mentioned setup and parameters yield best results for both uniformity and material quality. With the setup mentioned, we could achieve device quality a-Si:H films with a thickness uniformity of ±2.5% on a circular area of 20 cm in diameter. The material, grown at a deposition rate of rd≈4 Å/s, was characterized on nine positions of the 30 cm×30 cm substrate area, and revealed reasonable uniformity of the opto-electronic properties, e.g photosensitivity, σPhD=(2.46±0.7)×105, microstructure factor, R=0.17±0.05, defect densities, Nd(PDS)=(2.06±0.6)×1017 cm−3 and Nd(CPM)=(2.05±0.5)×1016 cm−3 (film properties are given as mean values and standard deviations). Finally, we fabricated pin solar cells, with the i-layer deposited on small-area p-substrates distributed over an area of 20 cm×20 cm in this large-area deposition system, and achieved high uniformity of the cell parameters with initial efficiencies of η=(6.1±0.2)% on the 20 cm×20 cm area.  相似文献   

10.
SILAR deposition of CuInSe2 films was performed by using Cu2+–TEAH3 (cupric chloride and triethanolamine) and In3+–CitNa (indium chloride and sodium citrate) chelating solutions with weak basic pH as well as Na2SeSO3 solution at 70 °C. A separate mode and a mixed one of cationic precursor solutions were adopted to investigate effects of the immersion programs on crystallization, composition and morphology of the deposited CuInSe2 films. Chelating chemistry in two solution modes was deducted based on IR measurement. The XRD, XPS and SEM results showed that well-crystallized, smoothly and distinctly particular CuInSe2 films could be obtained after annealing in Ar at 400 °C for 1 h by using the mixed cationic solution mode.  相似文献   

11.
In order to improve the solar cell conversion efficiency, a thin film of doped tin oxide (SnO2: F) has been deposited by the spray-pyrolysis technique on a monocrystalline diffused silicon wafer. Subsequently, the layer must undergo the firing step of screen-printed contacts with temperatures up to 830 °C. After annealing, one notices with the naked eye the appearance of speckles disturbing the uniformity of the as-deposited blue-coloured SnO2:F. Characterizations such as XPS, FTIR, RBS, XRD, SEM, Hall Effect, four point probe...etc, are all consistent to reveal a net increase of the SnO2:F layer resistivity which leads to efficiency degradation. Annealing the thin films under CO and 90% N2–10% H2 atmospheres was investigated to seek possibilities to preserve the expected improvements. Unlike forming gas, CO reducing ambient was found to be very effective for the high temperature contact firing with no thin film conductivity deterioration.  相似文献   

12.
A simple spray method for the preparation of pyrite (FeS2) thin films has been studied using FeSO4 and (NH4)2Sx as precursors for Fe and S, respectively. Aqueous solutions of these precursors are sprayed alternately onto a substrate heated up to 120°C. Although Fe–S compounds including pyrite are formed on the substrate by the spraying, sulfurization of deposited films is needed to convert other phases such as FeS or marcasite into pyrite. A single-phase pyrite film is obtained after the sulfurization in a H2S atmosphere at around 500°C for 30 min. All pyrite films prepared show p-type conduction. They have a carrier concentration (p) in the range 1016–1020 cm−3 and a Hall mobility (μH) in the range 200–1 cm2/V s. The best electrical properties (p=7×1016 cm−3, μH=210 cm2/V s) for a pyrite film prepared here show the excellence of this method. The use of a lower concentration FeSO4 solution is found to enhance grain growth of pyrite crystals and also to improve electrical properties of pyrite films.  相似文献   

13.
Zn3P2 semiconductor thin films were prepared by electrodeposition technique form aqueous solutions. The deposition mechanism was investigated by cyclic voltammetry technique. Crystal structure, morphology and composition of as deposited and annealed Zn3P2 thin films grown on SnO2/glass substrates were determined by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray analysis. X-ray diffraction data indicated the formation of Zn3P2 as the predominant phase for both as-deposited and annealed films. The compositions of the deposited films were controlled by the bath temperature, deposition potential and Zn/P ratio in the solution.The dark current–voltage measurements of SnO2/Zn3P2/C devices indicated a rectifying behavior and a reverse saturation current density of 1.7×10−7 A/cm2, which is in good accordance with that obtained from films prepared using vacuum technique. Also, the capacitance–voltage measurements showed that the number of interface states and the built in potential are in the order of 5×10−9 cm−3 and 0.85 V, respectively. These preliminary results for Zn3P2 thin films reveal that, this semiconductor material can be used for solar cell applications.  相似文献   

14.
ZnxCd1−xO thin films were prepared on glass substrates by spray pyrolysis technique. The precursor solutions were obtained by varying the concentration of Zn(NO3)2·6H2O and Cd(NO3)2·4H2O in bi-distilled water. The structural properties have been studied using X-ray diffraction spectra. All the structures include the basic compounds, i.e. ZnO and CdO. The orientation and the crystalline phases of the deposited films were specified. With the addition of Zn to the precursor solution, we can observe the preferential orientation of the CdO in the [2 0 0] direction. The electrical measurements were performed using method of four contacts. Thin films transmittances, in the 1.5–4.3 eV range, for different compositions have been measured and the optical gaps have been determined. The variations are explained considering the gaps of the two pure films. The influence of increased Cd concentration in the films on the structural, electrical and optical properties is investigated in this study.  相似文献   

15.
Low-resistivity ZnO films were grown by photo atomic layer deposition (photo-ALD) technique using diethylzinc (DEZ) and H2O as reactant gases. Self-limiting growth was achieved for the temperature range from 105°C to 235°C. It was found that UV light irradiation was very effective to increase the electron concentration of the films and the electron concentration of 5 × 1020 cm−3 was achieved even in undoped ZnO. Thus, the resistivity of the films grown with UV irradiation was one order of magnitude less than that grown without UV irradiation. The minimum resistivity of 6.9 × 10−4Ω cm was obtained by photo- ALD method without any intentional doping.  相似文献   

16.
Two parameters have been added to the Extended UNIQUAC model of Thomsen and Rasmussen [Thomsen, K., Rasmussen, P., 1999. Modeling of vapor–liquid–solid equilibrium in gas-aqueous electrolyte systems. Chem. Eng. Sci. 54, 1787–1802] to account for the pressure dependency of mineral solubility. The improved model has been used for correlating and predicting vapor–liquid–solid equilibrium for different carbonate systems (CaCO3, MgCO3, BaCO3 and SrCO3) causing mineral scaling problems. The solubility of NaCl and CO2 in pure water and the solubility of CO2 in NaCl and Na2SO4 solutions have also been correlated. The results show that the Extended UNIQUAC model, with the added pressure parameters, is able to represent binary (NaCl–H2O, CaCO3–H2O, BaCO3–H2O, SrCO3–H2O, MgCO3–H2O, Mg(OH)2–H2O and CO2–H2O), ternary (CaCO3–CO2–H2O, BaCO3–CO2–H2O, SrCO3–CO2–H2O, MgCO3–CO2–H2O, CO2–NaCl–H2O and CO2–Na2SO4–H2O), and quaternary (CO2–NaCl–Na2SO4–H2O) solubility data within the experimental accuracy in the range of temperatures and pressures considered in the study, i.e. from 0 to 250 °C, and from 1 to 1000 bar, respectively.The modified Extended UNIQUAC model will be a useful tool for predicting and quantifying the scaling problems that may occur in wells and surface equipment during geothermal operations. This would allow adequate preventive measures to be taken before mineral deposition becomes troublesome.  相似文献   

17.
Zn1−xMgxO:Al thin films have been prepared on glass substrates by pulsed laser deposition (PLD). The effect of substrate temperature has been investigated from room temperature to 500 °C by analyzing the structural, optical and electrical properties. The best sample deposited at 250 °C shows the lowest room-temperature resistivity of 5.16×10−4 Ω cm, and optical transmittance higher than 80% in the visible region. It is observed that the optical band gap decreases from 3.92 to 3.68 eV when the substrate temperature increases from 100 to 500 °C. The probable mechanism is discussed.  相似文献   

18.
We investigated a simple field effect passivation of the silicon surfaces using the high-pressure H2O vapor heating. Heat treatment with 2.1×106 Pa H2O vapor at 260°C for 3 h reduced the surface recombination velocity from 405 cm/s (before the heat treatment) to 38 cm/s for the thermally evaporated SiOx film/Si. Additional deposition of 140 nm-SiOx films (x<2) with a high density of fixed positive charges on the SiO2/Si samples further decreased the surface recombination velocity to 22 cm/s. We also demonstrated the field effect passivation for n-type silicon wafer coated with thermally grown SiO2. Additional deposition of 210 nm SiOx films on both the front and rear surfaces increased the effective lifetime from 1.4 to 4.6 ms. Combination of thermal evaporation of SiOx film and the heat treatment with high-pressure H2O vapor is effective for low-temperature passivation of the silicon surface.  相似文献   

19.
TiO2-overcoated SnO2:F transparent conductive oxide films were prepared by atmospheric pressure chemical vapor deposition (APCVD) and an effect of TiO2 layer thickness on a-Si solar cell properties was investigated. The optical properties and the structure of the TiO2 films were evaluated by spectroscopic ellipsometry and X-ray difractometry. a-Si thin film solar cells were fabricated on the SnO2:F films over-coated with TiO2 films of various thicknesses (1.0, 1.5 and 2.0 nm) and IV characteristics of these cells were measured under 1 sun (100 mW/cm2 AM-1.5) illumination. It was found that the TiO2 film deposited by APCVD has a refractive index of 2.4 at 550 nm and anatase crystal structure. The conversion efficiency of the a-Si solar cell fabricated on the 2.0 nm TiO2-overcoated SnO2:F film increased by 3%, which is mainly attributed to an increase in open circuit voltage (Voc) of 30 mV.  相似文献   

20.
Zinc oxide (ZnO) thin films have been successfully grown by metal organic chemical vapor deposition (MOCVD) technique using deuterium water (D2O) and water (H2O) mixtures as oxidants for diethylzinc (DEZ). B2H6 was also employed as a dopant gas. It was found that the crystal orientation of ZnO films strongly depends on D2O/H2O ratio. As a result, the surface morphology of ZnO changed from textured surface morphology to smooth surface morphology with increase in the ratio of D2O/H2O. Moreover, it was also observed that the carrier concentration of ZnO films did not change with the ratio of D2O/H2O, while the mobility of these films was strongly dependent on the D2O/H2O ratio. Without D2O addition, the resistivity of films had its lowest value and the minimum sheet resistance was 10 Ω/square. All films showed transmittance higher than 80% in the visible region. Moreover, the haze values of these films could be controlled by the ratio of D2O/H2O. These results indicate that the crystal orientation and surface morphology of the low resistivity ZnO films can be modified by using a mixture of D2O and H2O without changing the deposition temperature. Thus, the obtained ZnO films are promising for use as a front TCO layer in Si-based thin film solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号