首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘彩文  刘向东 《铸造技术》2012,33(8):933-935
在Na2SiO3-NaOH复合电解液体系下,对ZAlSi12Cu2Mg1微弧氧化陶瓷膜的形成进行了研究;通过改变丙三醇的含量,研究了其对电解液的电导率、微弧氧化的临界起弧电压、稳定氧化时间和陶瓷膜层厚度的影响,分析了丙三醇的作用。结果表明,丙三醇含量从0 ml/L到12 ml/L变化时,临界起弧正向电压由360 V逐渐升高至410 V,稳定氧化时间由16 min延长到26 min;含量从0 ml/L增加到4 ml/L时,膜厚从65μm迅速增加到152μm。含量超过4 ml/L,膜厚缓慢增加。电解液中加入丙三醇,膜层中除了莫来石相,还出现了α-Al2O3、γ-Al2O3、WO3和SiO2相。  相似文献   

2.
在交流条件下,采用硅酸钠电解液,通过调节不同的负向电压值,在ZAlSi12Cu2Mg1合金表面制得了微弧氧化陶瓷膜层.研究了不同的负向电压值对陶瓷膜层形成过程的影响.结果表明负向电压从80V到160V变化时,氧化时间从5 min延长到65 min,膜层厚度从28 μm增加到208μm,致密度从0.267 g/cm3增大到1.048 g/cm3,特别是微弧氧化第2阶段氧化时间,在负向电压为160 V时持续了32 min,试样表面逐渐变粗糙;在电解液组成为NaSiO38 g/L,NaOH 2 g/L,Na2EDTA 2g/L下,适宜的正/负向电压值为480/140 V,获得厚度为166 μm的膜层.XRD分析表明陶瓷层主要由莫来石、α-Al2O3和γ-Al2O3以及氧化铝的非晶物质组成.  相似文献   

3.
目的探究微弧氧化电解液中纳米α-Al2O3的浓度对铝合金微弧氧化膜层组织和性能的影响。方法在硅酸盐体系电解液中加入1~5 g/L纳米α-Al2O3,微弧氧化获得不同的陶瓷膜层,对膜层的微观结构、厚度、硬度和耐腐蚀性能进行分析。结果膜层的主要组成相为α-Al2O3、γ-Al2O3和SiO2。当纳米α-Al2O3添加量为3 g/L时,膜层表面微裂纹少,孔隙率小,厚度达70μm,硬度为513HV,耐腐蚀性能好。结论硅酸盐电解液中加入纳米α-Al2O3,能够改善铝合金微弧氧化膜层的综合性能。  相似文献   

4.
刘彩文  刘向东 《热加工工艺》2012,41(22):157-158,163
通过改变正向氧化电压,对ZAlSi12Cu2Mg1微弧氧化膜的形成进行研究,研究其对微弧氧化膜层特性的影响,并测定了膜层的相组成.结果表明:电压为430 V时,膜层厚度仅65 μm,膜层硬度434 HV,在30 min的干摩擦后膜层的磨损量为基体合金的29.86%;电压提高到440 V时,膜厚增到154 μm,膜层中含有3Al2O3·2SiO2、SiO2、α-Al2O3、γ-Al2O3和WO3,膜层硬度提高到898 HV,膜层的磨损量仅为基体的12.45%.超过440 V后,膜层厚、硬度及耐磨性均有所下降.  相似文献   

5.
通过在硅酸盐电解液体系中加入(NaPO3)6,研究其对ZAlSi12Cu2Mg1表面微弧氧化陶瓷膜层厚度、孔隙率及相组成的影响。结果表明,当(NaPO3)6的加入量在0~12g/L内逐渐增加时,微弧氧化陶瓷膜层的厚度逐渐上升。加入量为0~6g/L逐渐增加时,膜层孔隙率逐渐下降,超过6g/L时,孔隙率开始上升。电解液中未加(NaPO3)6时,陶瓷膜层主要由γ-Al2O3、α-Al2O3及Al2SiO5组成,α-Al2O3和γ-Al2O3相衍射峰强度大致相同;而加入6g/L(NaPO3)6后,陶瓷层中没有发现Na^+或PO3^-,但α-Al2O3相的衍射峰强度明显高于γ-Al2O3相,且铝基体的衍射峰强度有所降低。  相似文献   

6.
采用电解液成分逐渐加入法,在6种电解液中对ZAlSi12Cu2Mg1试样进行微弧氧化处理,研究电解液组成对微弧氧化陶瓷膜形成的影响,寻找合适的电解液组成.结果表明:电解液组成对陶瓷膜层的厚度、粗糙度、硬度、耐磨性、膜层微观形貌及相组成的影响很大,通过调节电解液成分,可获得性能优良的陶瓷膜.适宜的电解液组成为:8g/L NaSiO3,1 g/L NaOH,2 g/t,Na2WO4,0.5 g/L Na2EDTA及10 mL/L丙三醇.在此种电解液组成F,获得的陶瓷膜厚156 μm,面粗糙度为259nm显微硬度达HV 891.在干摩擦条件下,经30min磨损后,其磨损仅为基体的13.29%.观察膜层微观形貌,膜层均匀致密.XRD分析表明:氧化层中含有Al、莫来石、SiO2、а-Al2O3、y-Al2O3和WO3相.  相似文献   

7.
在铝酸盐、磷酸盐和硅酸盐3种电解液体系中,利用微弧氧化技术在6061铝合金表面原位生长陶瓷膜,通过SEM、XRD、EDS及显微硬度计对陶瓷膜层的微观结构、相组成、元素分布及显微硬度进行分析。结果表明:3种陶瓷膜均为疏松层和致密层组成的双层结构,膜层表面存在许多微孔;陶瓷膜均由α-Al2O3和γ-Al2O3组成,γ-Al2O3衍射峰强度高于α-Al2O3在磷酸盐和硅酸盐体系中,微弧氧化陶瓷膜表面分别含有P和Si元素,表明电解液中的离子参与成膜过程;在铝酸盐中制备的陶瓷膜显微硬度优于其它2种体系,可达到16350MPa,比6061铝合金硬度提高了10倍。  相似文献   

8.
Na2ZrF6-KoH中微弧氧化2024铝合金陶瓷膜   总被引:1,自引:0,他引:1  
为了提高2024铝合金的表面硬度和耐磨损性能,采用微弧氧化法在Na2zrF6-KOH溶液中使2024铝合金表面形成氧化物陶瓷膜.分别用扫描电镜、电子探针及X射线衍射研究了陶瓷膜的组织形貌、元素分布和相组成.结果表明随氧化时间的增加,阴阳极电压逐渐增加,且阴极电压低于阳极电压;厚约20μm的膜可分为致密层与琉松层;相对致密均匀的膜层主要由α-Al2O3,γ-Al2O3和少量的非晶相物质组成电解液所含元素zr,进入到膜层中,表明电解液组元剧烈参与微弧氧化反应;陶瓷膜的平均硬度约为16 GPa,分布在距界面10μm附近.  相似文献   

9.
Na2WO4和SiCp对2Al2铝合金微弧氧化膜的影响   总被引:1,自引:1,他引:0  
在质量浓度为40 g/L的Na2SiO3,8 g/L的Na2WO4混合电解液中添加SiCp,在2A12铝合金基体上原位生长微弧氧化陶瓷膜.采用扫描电子显微镜(SEM)、能谱分析仪(EDS)、X射线衍射仪(XRD)分析了陶瓷膜微观形貌、元素含量、相组成,通过数字式覆层测厚仪和摩擦磨损试验检测了氧化膜的厚度和耐磨性.结果表明,Na2SiO3、Na2WO4混合电解液生长的陶瓷膜由α-Al2O3和mullite相组成,膜层较致密,Na2WO4的加入提高了膜层生长速率;添加SiC微粒后,微弧氧化过程中SiC微粒分解,促进莫来石相形成,膜层有较好的耐磨性.  相似文献   

10.
2A06铝合金表面微弧氧化陶瓷层摩擦学特性   总被引:3,自引:0,他引:3  
采用微弧氧化技术,以硅酸盐为主要电解液,在2A06铝合金表面制备出高硬度、高耐磨性的微弧氧化陶瓷膜。用扫描电镜观测膜层的显微结构,用X射线衍射分析其相组成,并对膜层进行耐磨损和抗冲蚀试验。结果表明,氧化时间越长,2A06铝合金表面陶瓷层越厚,陶瓷层粗糙度也越高。陶瓷层由过渡层、致密层和疏松层组成。过渡层与基体和致密层结合紧密。致密层的相组成主要为α-Al2O3、γ-Al2O3,疏松层的相组成主要为α-Al2O3、γ-Al2O3以及Al6Si2O3。致密层中的α-Al2O3相的含量远高于疏松层。从试样边缘到试样中心硬度逐渐降低,最高硬度出现在试样表面边缘向内5~20 mm处,平均HV硬度可达20.96 GPa。2A06铝合金的耐磨性比较差,磨轮转速从100 r/min增至400 r/min时,磨损量不断增加且呈线性分布。微弧氧化制备的陶瓷层磨损量在磨损开始时(100 r/min)稍高,磨轮转速到600 r/min时磨损量趋于稳定,磨轮转速到1600 r/min时磨损量仍然呈现较低水平。陶瓷层的冲蚀体积损失率也远低于2A06铝合金基体。  相似文献   

11.
铝合金表面微弧氧化陶瓷层耐磨性   总被引:1,自引:1,他引:0  
利用微弧氧化技术在7075铝合金表面形成微弧氧化陶瓷膜层,通过SEM、XRD手段分析了微弧氧化陶瓷层的显微结构、表面形貌和相组成,并在HIT-Ⅱ摩擦磨损试验机上测试了陶瓷膜层的摩擦学性能.结果表明:7075铝合金表面的微弧氧化陶瓷膜层由疏松层、致密层构成,其相组成主要是α-Al2O3和γ-Al2O3两相;氧化陶瓷层与基体结合良好,厚度为25~45μm,表面硬度可达到1900HV0.1左右;微弧氧化表面处理技术可以显著提高铝合金的表面耐磨性,在与GCr15钢球对磨时,膜层具有较低的磨损率,但摩擦因数相对较高.  相似文献   

12.
利用微弧氧化技术在6063铝合金表面制备了黑色陶瓷膜层,根据对微弧氧化工艺因素的分析以及对膜层化学组成和相结构的检测,探讨了黑色膜层的显色机理。结果表明,在以适量的硅酸钠(Na2Si O3)和多聚磷酸钠(Na5P3O10)为主盐、钒酸铵(NH4VO3)为着色剂的电解液体系中,且仅施加正向电压,在铝合金表面可以形成以γ-Al2O3为主要组成相的陶瓷膜。亚稳定的γ-Al2O3对在正向电场作用下迁移到试样附近的VO-3离子的吸附,VO-3离子在等离子弧高温下反应形成黑色的V2O3,是黑色陶瓷膜形成的主要机制。  相似文献   

13.
采用微弧氧化法在铝合金(ZL101A)基体上制备陶瓷膜层。研究了不同电解液和添加剂对涂层硬度、厚度及相组成的影响。结果表明:膜层厚度、硬度随NaH2PO3和(NaPO3)6的增加而提高。XRD相结构分析表明:涂层中的主要相为γ-Al2O3、α-Al2O3和Mg2Al4Si5O18,随α-Al2O3相增多,膜层的耐蚀性升高。  相似文献   

14.
在硅酸钠和含氟添加剂组成的电解液体系中,采用微弧氧化的方法在工业纯铝及其氩弧焊接接头表面均匀生长了一层陶瓷膜。利用扫描电镜、能谱仪和X射线衍射仪分析了铝基体和焊接区表面陶瓷膜的形貌和相组成;探讨了硅酸钠的浓度对陶瓷膜厚度及粗糙度的影响。结果表明:铝基体及焊接区陶瓷膜的厚度及粗糙度均随着硅酸钠浓度的增大而增加,焊区膜厚及粗糙度小于基体金属。铝基体和焊缝区的微弧氧化膜特性几乎相同,陶瓷膜都是由α-Al2O3、γ-Al2O3组成。和基体金属相比,焊区陶瓷膜对应的气孔小些,且相对光滑、均匀。  相似文献   

15.
采用电解液成分逐渐加入法,在6种电解液中对ZAlSi12Cu2Mg1试样进行微弧氧化处理,研究电解液组成对微弧氧化陶瓷膜形成的影响,寻找合适的电解液组成。结果表明:电解液组成对陶瓷膜层的厚度、粗糙度、硬度、耐磨性、膜层微观形貌及相组成的影响很大,通过调节电解液成分,可获得性能优良的陶瓷膜。适宜的电解液组成为:8g/LNaSiO3,1g/LNaOH,2g/LNa2WO4,0.5g/LNa2EDTA及10mL/L丙三醇。在此种电解液组成下,获得的陶瓷膜厚156μm,面粗糙度为259nm,显微硬度达HV891。在干摩擦条件下,经30min磨损后,其磨损仅为基体的13.29%。观察膜层微观形貌,膜层均匀致密。XRD分析表明:氧化层中含有Al、莫来石、SiO2、d.Al2O3、y-Al2O3和WO3相。  相似文献   

16.
在电解液中添加不同含量的Li2SO4,在铸造铝合金表面制得微弧氧化陶瓷层。采用SEM、XRD和EDS等分析陶瓷层表面形貌及物相组成。结果表明,随着电解液中Li2SO4加入量的增加,微弧氧化膜厚度增加,膜层表面变得粗糙。微弧氧化膜主要是由α-Al2O3、γ-Al2O3、莫来石和非晶相组成。  相似文献   

17.
电压参数对铝合金微弧氧化陶瓷层相组成的影响   总被引:5,自引:0,他引:5  
通过XRD分析,研究了正向、负向电压对铝合金微弧氧化陶瓷层相组成的影响.结果表明,陶瓷层主要由α-Al2O3相、γ-Al2O3相和mullite(莫来石)相组成,α-Al2O3相在陶瓷层内侧的质量分数高于外层,而mullite相的分布则相反.单独提高正向电压时,α-Al2O3相的质量分数先增后减;而单独提高负向电压时,α-Al2O3相的质量分数明显提高.γ-Al2O3质量分数的变化与α-Al2O3相反.电压变化时,内侧的mullite相的质量分数变化不大,但外侧的质量分数随电压提高而增加.  相似文献   

18.
采用微弧氧化(MAO)技术,以硅酸盐为主要电解液成分,通过加入稀土元素铈以及石墨烯添加剂,在7050高强铝合金表面制备微弧氧化膜层。利用扫描电镜(SEM)、体视显微镜、X射线衍射仪(XRD)、摩擦磨损试验机以及电化学工作站研究微弧氧化陶瓷膜层的形貌、粗糙度、相组成和元素分布以及耐磨性和耐蚀性。结果表明:同时加入4 g/L CeO2和10 g/L的石墨烯制备的复合膜层表面微孔尺寸明显降低,结构致密,耐磨性较好,粗糙度最低(1516.03 nm),膜层主要由α-Al2O3和γ-Al2O3组成。且此时的复合膜层自腐蚀电位最大,自腐蚀电流最小,耐腐蚀性最佳。  相似文献   

19.
电解液中Ce(NO_3)_3含量对ZAlSi12合金微弧氧化层特性的影响   总被引:1,自引:0,他引:1  
研究Na2SiO3-NaOH体系电解液中Ce(NO3)3含量在0~0.20g/L范围内变化时对ZAlSi12合金表面微弧氧化陶瓷层组织和厚度的影响。采用SEM、XRD分析微弧氧化处理后陶瓷层的表面形貌和相组成。结果表明:随着Ce(NO3)3含量增加,陶瓷氧化层厚度逐渐增大,电解液中Ce(NO3)3加入量0.15g/L时可获得最大厚度为170μm的陶瓷层;电解液中加入Ce(NO3)3后,膜层仍主要由α-Al2O3和γ-Al2O3相组成,但α-Al2O3相的相对含量增加。  相似文献   

20.
铝合金微弧氧化工艺研究   总被引:3,自引:3,他引:0  
赵艳  李玉海 《表面技术》2009,38(1):51-53
为了达到改善铝合金表面硬度低、耐磨耐蚀性差的目的,采用脉冲电源微弧氧化技术在硅酸钠电解液中在铝合金表面原位生长陶瓷膜.讨论氧化时间和电流密度对微弧氧化成膜厚度的影响.用数字式覆层测厚仪测量膜厚,扫描电子显微镜和X射线衍射分析膜层显微结构和相组成.结果表明:氧化时间越长,膜层越厚,但是30min以后不再增厚,电流密度越大,膜层越厚;陶瓷层表面有微孔产生,膜层与基体结合紧密,膜层由致密层、过渡层和疏松层组成,致密层厚且致密;氧化膜由γ-Al2O3、mullite莫来石(3Al2O3·2SiO2)和AlO相组成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号