首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the consistency of systematic retrievals of surface reflectance and leaf area index was assessed using overlap regions in adjacent Landsat Enhanced Thematic Mapper-Plus (ETM+) scenes. Adjacent scenes were acquired within 7-25 days apart to minimize variations in the land surface reflectance between acquisition dates. Each Landsat ETM+ scene was independently geo-referenced and atmospherically corrected using a variety of standard approaches. Leaf area index (LAI) models were then applied to the surface reflectance data and the difference in LAI between overlapping scenes was evaluated. The results from this analysis show that systematic LAI retrieval from Landsat ETM+ imagery using a baseline atmospheric correction approach that assumes a constant aerosol optical depth equal to 0.06 is consistent to within ±0.61 LAI units. The average absolute difference in LAI retrieval over all 10 image pairs was 26% for a mean LAI of 2.05 and the maximum absolute difference over any one pair was 61% for a mean LAI of 1.13. When no atmospheric correction was performed on the data, the consistency in LAI retrieval was improved by 1%. When a scene-based dense, dark vegetation atmospheric correction algorithm was used, the LAI retrieval differences increased to 28% for a mean LAI of 2.32. This implies that a scene-based atmospheric correction procedure may improve the absolute accuracy of LAI retrieval without having a major impact on retrieval consistency. Such consistency trials provide insight into the current limits concerning surface reflectance and LAI retrieval from fine spatial resolution remote sensing imagery with respect to the variability in clear-sky atmospheric conditions.  相似文献   

2.
Plant foliage density expressed as leaf area index (LAI) is used in many ecological, meteorological, and agronomic models, and as a means of quantifying crop spatial variability for precision farming. LAI retrieval using spectral vegetation indices (SVI) from optical remotely sensed data usually requires site-specific calibration values from the surface or the use of within-scene image information without surface calibrations to invert radiative transfer models. An evaluation of LAI retrieval methods was conducted using (1) empirical methods employing the normalized difference vegetation index (NDVI) and a new SVI that uses green wavelength reflectance, (2) a scaled NDVI approach that uses no calibration measurements, and (3) a hybrid approach that uses a neural network (NN) and a radiative transfer model without site-specific calibration measurements. While research has shown that under a variety of conditions NDVI is not optimal for LAI retrieval, its continued use for remote sensing applications and in analysis seeking to develop improved parameter retrieval algorithms based on NDVI suggests its value as a “benchmark” or standard against which other methods can be compared. Landsat-7 ETM+ data for July 1 and July 8 from the Soil Moisture EXperiment 2002 (SMEX02) field campaign in the Walnut Creek watershed south of Ames, IA, were used for the analysis. Sun photometer data collected from a site within the watershed were used to atmospherically correct the imagery to surface reflectance. LAI validation measurements of corn and soybeans were collected close to the dates of the Landsat-7 overpasses. Comparable results were obtained with the empirical SVI methods and the scaled SVI method within each date. The hybrid method, although promising, did not account for as much of the variability as the SVI methods. Higher atmospheric optical depths for July 8 leading to surface reflectance errors are believed to have resulted in overall poorer performance for this date. Use of SVIs employing green wavelengths, improved method for the definition of image minimum and maximum clusters used by the scaled NDVI method, and further development of a soil reflectance index used by the hybrid NN approach are warranted. More importantly, the results demonstrate that reasonable LAI estimates are possible using optical remote sensing methods without in situ, site-specific calibration measurements.  相似文献   

3.
Empirical models are important tools for relating field-measured biophysical variables to remote sensing data. Regression analysis has been a popular empirical method of linking these two types of data to provide continuous estimates for variables such as biomass, percent woody canopy cover, and leaf area index (LAI). Traditional methods of regression are not sufficient when resulting biophysical surfaces derived from remote sensing are subsequently used to drive ecosystem process models. Most regression analyses in remote sensing rely on a single spectral vegetation index (SVI) based on red and near-infrared reflectance from a single date of imagery. There are compelling reasons for utilizing greater spectral dimensionality, and for including SVIs from multiple dates in a regression analysis. Moreover, when including multiple SVIs and/or dates, it is useful to integrate these into a single index for regression modeling. Selection of an appropriate regression model, use of multiple SVIs from multiple dates of imagery as predictor variables, and employment of canonical correlation analysis (CCA) to integrate these multiple indices into a single index represent a significant strategic improvement over existing uses of regression analysis in remote sensing.To demonstrate this improved strategy, we compared three different types of regression models to predict LAI for an agro-ecosystem and live tree canopy cover for a needleleaf evergreen boreal forest: traditional (Y on X) ordinary least squares (OLS) regression, inverse (X on Y) OLS regression, and an orthogonal regression method called reduced major axis (RMA). Each model incorporated multiple SVIs from multiple dates and CCA was used to integrate these. For a given dataset, the three regression-modeling approaches produced identical coefficients of determination and intercepts, but different slopes, giving rise to divergent predictive characteristics. The traditional approach yielded the lowest root mean square error (RMSE), but the variance in the predictions was lower than the variance in the observed dataset. The inverse method had the highest RMSE and the variance was inflated relative to the variance of the observed dataset. RMA provided an intermediate set of predictions in terms of the RMSE, and the variance in the observations was preserved in the predictions. These results are predictable from regression theory, but that theory has been essentially ignored within the discipline of remote sensing.  相似文献   

4.
This study presents a method to assimilate leaf area index retrieved from ENVISAT ASAR and MERIS data into CERES-Wheat crop growth model with the objective to improve the accuracy of the wheat yield predictions at catchment scale. The assimilation method consists in re-initialising the model with optimal input parameters allowing a better temporal agreement between the LAI simulated by the model and the LAI estimated by remote sensing data. A variational assimilation algorithm has been applied to minimise the difference between simulated and remotely-sensed LAI and to determine the optimal set of input parameters. After the re-initialisation, the wheat yield maps have been obtained and their accuracy evaluated.The method has been applied over Matera site located in Southern Italy and validated by using the dataset of an experimental campaign carried out during the 2004 wheat growing season.Results indicate that, LAI maps retrieved from MERIS and ASAR data can be effectively assimilated into CERES-Wheat model thus leading to accuracies of the yield maps ranging from 360 kg/ha to 420 kg/ha.  相似文献   

5.
With the successful launch of the IKONOS satellite, very high geometric resolution imagery is within reach of civilian users. In the 1-m spatial resolution images acquired by the IKONOS satellite, details of buildings, individual trees, and vegetation structural variations are detectable. The visibility of such details opens up many new applications, which require the use of geometrical information contained in the images. This paper presents an application in which spectral and textural information is used for mapping the leaf area index (LAI) of different vegetation types. This study includes the estimation of LAI by different spectral vegetation indices (SVIs) combined with image textural information and geostatistical parameters derived from high resolution satellite data. It is shown that the relationships between spectral vegetation indices and biophysical parameters should be developed separately for each vegetation type, and that the combination of the texture indices and vegetation indices results in an improved fit of the regression equation for most vegetation types when compared with one derived from SVIs alone. High within-field spatial variability was found in LAI, suggesting that high resolution mapping of LAI may be relevant to the introduction of precision farming techniques in the agricultural management strategies of the investigated area.  相似文献   

6.
Microwave-based remote sensing algorithms for mapping soil moisture are sensitive to water contained in surface vegetation at moderate levels of canopy cover. Correction schemes require spatially distributed estimates of vegetation water content at scales comparable to that of the microwave sensor footprint (101 to 104 m). This study compares the relative utility of high-resolution (1.5 m) aircraft and coarser-resolution (30 m) Landsat imagery in upscaling an extensive set of ground-based measurements of canopy biophysical properties collected during the Soil Moisture Experiment of 2002 (SMEX02) within the Walnut Creek Watershed. The upscaling was accomplished using expolinear relationships developed between spectral vegetation indices and measurements of leaf area index, canopy height, and vegetation water content. Of the various indices examined, a Normalized Difference Water Index (NDWI), derived from near- and shortwave-infrared reflectances, was found to be least susceptible to saturation at high levels of leaf area index. With the aircraft data set, which did not include a short-wave infrared water absorption band, the Optimized Soil Adjusted Vegetation Index (OSAVI) yielded best correlations with observations and highest saturation levels. At the observation scale (10 m), LAI was retrieved from both NDWI and OSAVI imagery with an accuracy of 0.6, vegetation water content at 0.7 kg m−2, and canopy height to within 0.2 m. Both indices were used to estimate field-scale mean canopy properties and variability for each of the intensive soil-moisture-sampling sites within the watershed study area. Results regarding scale invariance over the SMEX02 study area in transformations from band reflectance and vegetation indices to canopy biophysical properties are also presented.  相似文献   

7.
This article addresses the major scaling problems in leaf area index (LAI) retrieval for a heterogeneous surface associated with (1) the nonlinearity in the relationships between remotely sensed reflectances and LAI products, (2) the discontinuity caused by the mixture of contrasting cover types that is categorized as the dominating type within a large-scale pixel, and (3) the algorithm for the dominant cover type being used for the retrieval of the LAI in that large-scale mixed pixel. Through mathematical analysis, two scaling models (a component-based model and a pixel-based model) are proposed on the basis of the Taylor series expansion with the corresponding textural and contextural parameters (i.e. variance–covariance matrices and component fractions) to correct for the scaling effects among LAI products at different scales. These models express the magnitude of the scaling effects for the nonlinear and discontinuous situations as a function of (1) the degree of nonlinearity quantified by the second derivative of the retrieval function, (2) the spatial heterogeneity quantified by variance–covariance matrices, and (3) the component fractions in the large-scale mixed pixel. To evaluate the proposed scaling models, a scaling correction test is performed and analysed on a SPOT (Système Pour l'Observation de la Terre) image for two vegetation types. The component fractions have proven to be the main reason for the scaling effects in a mixed pixel. Compared to the results before scaling, using either of the two proposed models greatly reduces the retrieval errors that the scaling effects cause. The relative scaling effects of the LAI may be up to 55% in an uncorrected, large-scale mixed pixel. However, the relative scaling errors can be as low as 2% with the intra-component textural parameters and about 13% with the intra-pixel textural parameters. Because the scaling effects can be corrected for the spatial heterogeneity caused either by density changes within the same cover or by cover type changes, our work indicates that the proposed scaling models are promising and feasible.  相似文献   

8.
Leaf area index (LAI) is a commonly required parameter when modelling land surface fluxes. Satellite based imagers, such as the 300 m full resolution (FR) Medium Spectral Resolution Imaging Spectrometer (MERIS), offer the potential for timely LAI mapping. The availability of multiple MERIS LAI algorithms prompts the need for an evaluation of their performance, especially over a range of land use conditions. Four current methods for deriving LAI from MERIS FR data were compared to estimates from in-situ measurements over a 3 km × 3 km region near Ottawa, Canada. The LAI of deciduous dominant forest stands and corn, soybean and pasture fields was measured in-situ using digital hemispherical photography and processed using the CANEYE software. MERIS LAI estimates were derived using the MERIS Top of Atmosphere (TOA) algorithm, MERIS Top of Canopy (TOC) algorithm, the Canada Centre for Remote Sensing (CCRS) Empirical algorithm and the University of Toronto (UofT) GLOBCARBON algorithm. Results show that TOA and TOC LAI estimates were nearly identical (R2 > 0.98) with underestimation of LAI when it is larger than 4 and overestimation when smaller than 2 over the study region. The UofT and CCRS LAI estimates had root mean square errors over 1.4 units with large (∼ 25%) relative residuals over forests and consistent underestimates over corn fields. Both algorithms were correlated (R2 > 0.8) possibly due to their use of the same spectral bands derived vegetation index for retrieving LAI. LAI time series from TOA, TOC and CCRS algorithms showed smooth growth trajectories however similar errors were found when the values were compared with the in-situ LAI. In summary, none of the MERIS LAI algorithms currently meet performance requirements from the Global Climate Observing System.  相似文献   

9.
Leaf area index (LAI) is an important variable needed by various land surface process models. It has been produced operationally from the Moderate Resolution Imaging Spectroradiometer (MODIS) data using a look-up table (LUT) method, but the inversion accuracy still needs significant improvements. We propose an alternative method in this study that integrates both the radiative transfer (RT) simulation and nonparametric regression methods. Two nonparametric regression methods (i.e., the neural network [NN] and the projection pursuit regression [PPR]) were examined. An integrated database was constructed from radiative transfer simulations tuned for two broad biome categories (broadleaf and needleleaf vegetations). A new soil reflectance index (SRI) and analytically simulated leaf optical properties were used in the parameterization process. This algorithm was tested in two sites, one at Maryland, USA, a middle latitude temperate agricultural area, and the other at Canada, a boreal forest site, and LAI was accurately estimated. The derived LAI maps were also compared with those from MODIS science team and ETM+ data. The MODIS standard LAI products were found consistent with our results for broadleaf crops, needleleaf forest, and other cover types, but overestimated broadleaf forest by 2.0-3.0 due to the complex biome types.  相似文献   

10.
Many algorithms have been developed for the remote estimation of biophysical characteristics of vegetation, in terms of combinations of spectral bands, derivatives of reflectance spectra, neural networks, inversion of radiative transfer models, and several multi-spectral statistical approaches. However, the most widespread type of algorithm used is the mathematical combination of visible and near-infrared reflectance bands, in the form of spectral vegetation indices. Applications of such vegetation indices have ranged from leaves to the entire globe, but in many instances, their applicability is specific to species, vegetation types or local conditions. The general objective of this study is to evaluate different vegetation indices for the remote estimation of the green leaf area index (Green LAI) of two crop types (maize and soybean) with contrasting canopy architectures and leaf structures. Among the indices tested, the chlorophyll Indices (the CIGreen, the CIRed-edge and the MERIS Terrestrial Chlorophyll Index, MTCI) exhibited strong and significant linear relationships with Green LAI, and thus were sensitive across the entire range of Green LAI evaluated (i.e., 0.0 to more than 6.0 m2/m2). However, the CIRed-edge was the only index insensitive to crop type and produced the most accurate estimations of Green LAI in both crops (RMSE = 0.577 m2/m2). These results were obtained using data acquired with close range sensors (i.e., field spectroradiometers mounted 6 m above the canopy) and an aircraft-mounted hyperspectral imaging spectroradiometer (AISA). As the CIRed-edge also exhibited low sensitivity to soil background effects, it constitutes a simple, yet robust tool for the remote and synoptic estimation of Green LAI. Algorithms based on this index may not require re-parameterization when applied to crops with different canopy architectures and leaf structures, but further studies are required for assessing its applicability in other vegetation types (e.g., forests, grasslands).  相似文献   

11.
Remote sensing of forest canopy cover has been widely studied recently, but little attention has been paid to the quality of field validation data. Ecological literature has two different coverage metrics. Vertical canopy cover (VCC) is the vertical projection of tree crowns ignoring within-crown gaps. Angular canopy closure (ACC) is the proportion of covered sky at some angular range around the zenith, and can be measured with a field-of-view instrument, such as a camera. We compared field-measured VCC and ACC at 15° and 75° from the zenith to different LiDAR (Light Detection and Ranging) metrics, using several LiDAR data sets and comprehensive field data. The VCC was estimated to a high precision using a simple proportion of canopy points in first-return data. Confining to a maximum 15° scan zenith angle, the absolute root mean squared error (RMSE) was 3.7-7.0%, with an overestimation of 3.1-4.6%. We showed that grid-based methods are capable of reducing the inherent overestimation of VCC. The low scan angles and low power settings that are typically applied in topographic LiDARs are not suitable for ACC estimation as they measure in wrong geometry and cannot easily detect small within-crown gaps. However, ACC at 0-15° zenith angles could be estimated from LiDAR data with sufficient precision, using also the last returns (RMSE 8.1-11.3%, bias -6.1-+4.6%). The dependency of LiDAR metrics and ACC at 0-75° zenith angles was nonlinear and was modeled from laser pulse proportions with nonlinear regression with a best-case standard error of 4.1%. We also estimated leaf area index from the LiDAR metrics with linear regression with a standard error of 0.38. The results show that correlations between airborne laser metrics and different canopy field characteristics are very high if the field measurements are done with equivalent accuracy.  相似文献   

12.
The full realization of the potential of remote sensing as a source of environmental information requires an ability to generalize in space and time. Here, the ability to generalize in space was investigated through an analysis of the transferability of predictive relations for the estimation of tropical forest biomass from Landsat TM data between sites in Brazil, Malaysia and Thailand. The data sets for each test site were acquired and processed in a similar fashion to facilitate the analyses. Three types of predictive relation, based on vegetation indices, multiple regression and feedforward neural networks, were developed for biomass estimation at each site. For each site, the strongest relationships between the biomass predicted and that measured from field survey was obtained with a neural network developed specifically for the site (r>0.71, significant at the 99% level of confidence). However, with each type of approach problems in transferring a relation to another site were observed. In particular, it was apparent that the accuracy of prediction, as indicated by the correlation coefficient between predicted and measured biomass, declined when a relation was transferred to a site other than that upon which it was developed. Part of this problem lies with the observed variation in the relative contribution of the different spectral wavebands to predictive relations for biomass estimation between sites. It was, for example, apparent that the spectral composition of the vegetation indices most strongly related to biomass differed greatly between the sites. Consequently, the relationship between predicted and measured biomass derived from vegetation indices differed markedly in both strength and direction between sites. Although the incorporation of test site location information into an analysis resulted in an increase in the strength of the relationship between predicted and actual biomass, considerable further research is required on the problems associated with transferring predictive relations.  相似文献   

13.
The aim of this paper was to serve as a pilot study for running a physically based forest reflectance model through an operational forest management data base in Finnish coniferous forests. The LAI values of 250 boreal coniferous stands were retrieved with the physically based model by inversion from a SPOT HRVIR1 image. The use of three spectral vegetation indices (NDVI, RSR and MSI) in LAI estimation was tested for the same stands. Ground-truth LAI was based on an allometric model which can be applied to routine stand inventory data. Stand reflectances were computed as an average of reflectances of the pixels located within the digital stand borders.The relationships of LAI and spectral vegetation indices calculated from the SPOT data were very scattered. RSR exhibited the widest range of values (and the highest correlation with LAI), suggesting it to be more dynamic than MSI or NDVI. Inversion of the reflectance model was done twice: first using as simultaneous input three wavelength bands (red, NIR and MIR), then only the red and NIR bands. The aim was to observe whether including the MIR band in the inversion would improve the inverted LAI estimates or if using only the red and NIR bands would result in the same reliability of inverted values. The motivation for examining the influence of the MIR band resulted from several recent studies from the boreal zone which suggest that the pronounced understory effect could be minimized by the inclusion of the MIR band. The LAI values inverted by the model were slightly larger than the ground-truth LAI values. A minor improvement in LAI estimates was observed after the inclusion of the MIR band in reflectance model inversion. The errors in the ground-truth LAI were uncertain and the background understory reflectance was expected to be highly variable. Thus, the quality of the data used may be to a large extent responsible for the observed low utility of the tested channels.  相似文献   

14.
On the relationship of NDVI with leaf area index in a deciduous forest site   总被引:7,自引:0,他引:7  
Numerous studies have reported on the relationship between the normalized difference vegetation index (NDVI) and leaf area index (LAI), but the seasonal and annual variability of this relationship has been less explored. This paper reports a study of the NDVI-LAI relationship through the years from 1996 to 2001 at a deciduous forest site. Six years of LAI patterns from the forest were estimated using a radiative transfer model with input of above and below canopy measurements of global radiation, while NDVI data sets were retrieved from composite NDVI time series of various remote sensing sources, namely NOAA Advanced Very High Resolution Radiometer (AVHRR; 1996, 1997, 1998 and 2000), SPOT VEGETATION (1998-2001), and Terra MODIS (2001). Composite NDVI was first used to remove the residual noise based on an adjusted Fourier transform and to obtain the NDVI time-series for each day during each year.The results suggest that the NDVI-LAI relationship can vary both seasonally and inter-annually in tune with the variations in phenological development of the trees and in response to temporal variations of environmental conditions. Strong linear relationships are obtained during the leaf production and leaf senescence periods for all years, but the relationship is poor during periods of maximum LAI, apparently due to the saturation of NDVI at high values of LAI. The NDVI-LAI relationship was found to be poor (R2 varied from 0.39 to 0.46 for different sources of NDVI) when all the data were pooled across the years, apparently due to different leaf area development patterns in the different years. The relationship is also affected by background NDVI, but this could be minimized by applying relative NDVI.Comparisons between AVHRR and VEGETATION NDVI revealed that these two had good linear relationships (R2=0.74 for 1998 and 0.63 for 2000). However, VEGETATION NDVI data series had some unreasonably high values during beginning and end of each year period, which must be discarded before adjusted Fourier transform processing. MODIS NDVI had values greater than 0.62 through the entire year in 2001, however, MODIS NDVI still showed an “M-shaped” pattern as observed for VEGETATION NDVI in 2001. MODIS enhanced vegetation index (EVI) was the only index that exhibited a poor linear relationship with LAI during the leaf senescence period in year 2001. The results suggest that a relationship established between the LAI and NDVI in a particular year may not be applicable in other years, so attention must be paid to the temporal scale when applying NDVI-LAI relationships.  相似文献   

15.
Accurate high-resolution leaf area index (LAI) reference maps are necessary for the validation of coarser-resolution satellite-derived LAI products. In this article, we propose an efficient method based on the Bayesian Maximum Entropy (BME) paradigm to combine field observations and Landsat Enhanced Thematic Mapper Plus (ETM+)-derived LAI surfaces in order to produce more accurate LAI reference maps. This method takes into account the uncertainties associated with field observations and with the regression relationship between ETM+-derived LAI and field measurements to perform a non-linear prediction of LAI, the variable of interest. In order to demonstrate the difference by soft data and hard data, we estimate the LAI reference maps by three BME interpolation methods, BME1, BME2, and BME3. BME1 and BME2 perform maximum estimation and mean estimation, respectively, by taking the ETM+-derived LAI as interval soft data and the field LAI measurements as hard data. BME3 is utilized when ETM+-derived LAI surfaces are processed as uniform probability soft data and field measurements are processed as Gaussian probability soft data. Three study sites are selected from the BigFoot project (NASA's Earth Observing System validation programme) (http://www.fsl.orst.edu/larse/bigfoot/index.html). In regard to the mean and standard deviation of LAI surfaces, standard deviation predicted by BME methods has lower values than that derived by ETM+. The mean value of the BME-predicted LAI, which takes into account the uncertainties of field measurements, is lower than that of ETM+-derived LAI at each study site. A comparison with field measurements shows that BME1, BME2, and BME3 have root mean square errors (RMSE) of 0.455, 0.485, and 0.517 and average biases of??0.017,??0.010, and??0.304, respectively. The RMSEs and biases of the predicted LAI surfaces are less when compared to the ETM+-derived LAI, which has the average RMSE and bias of 0.642 and??0.080. When the field measurements are processed as soft data, the predicted LAI by BME3 has more bias than those of the predictions by BME1 and BME2, but has less RMSE than that of the ETM+-derived LAI by 0.125. In summary, BME is capable of incorporating the spatial autocorrelation and the uncertainties in the field LAI measurements into the LAI surface estimation to produce a more accurate LAI surface with less RMSE in validation. The maximum estimation has relatively better accuracy than the mean estimation. The results indicate that the BME is a promising method for fusing point-scale and area-scale data.  相似文献   

16.
A satellite sensor image based model suggested by Price was investigated for the estimation of Leaf Area Index (LAI) using data acquired by Linear Imaging Self Scanner-III (LISS-III) onboard Indian Remote Sensing Satellite-1C (IRS-1C) over two wheat growing sites in India (Karnal and Delhi) for crop seasons 1996-97 and 1997-98, respectively. Besides red and near-infrared (NIR) measurements over vegetation canopy, the model only requires a priori crop specific attentuation constants. These constants were computed for wheat using published and field ground reflectance measurements. Application of the model over 36 fields on which ground estimates of LAI were available, indicated a RMSE of 1.28 and 1.07 for the Karnal and Delhi sites, respectively.  相似文献   

17.
A simple data analysis technique for vegetation leaf area index (LAI) using Moderate Resolution Imaging Spectroradiometer (MODIS) data is presented. The objective is to generate LAI data that is appropriate for numerical weather prediction. A series of techniques and procedures which includes data quality control, time-series data smoothing, and simple data analysis is applied. The LAI analysis is an optimal combination of the MODIS observations and derived climatology, depending on their associated errors σo and σc. The “best estimate” LAI is derived from a simple three-point smoothing technique combined with a selection of maximum LAI (after data quality control) values to ensure a higher quality. The LAI climatology is a time smoothed mean value of the “best estimate” LAI during the years of 2002-2004. The observation error is obtained by comparing the MODIS observed LAI with the “best estimate” of the LAI, and the climatological error is obtained by comparing the “best estimate” of LAI with the climatological LAI value. The LAI analysis is the result of a weighting between these two errors. Demonstration of the method described in this paper is presented for the 15-km grid of Meteorological Service of Canada (MSC)'s regional version of the numerical weather prediction model. The final LAI analyses have a relatively smooth temporal evolution, which makes them more appropriate for environmental prediction than the original MODIS LAI observation data. They are also more realistic than the LAI data currently used operationally at the MSC which is based on land-cover databases.  相似文献   

18.
A prototype product suite, containing the Terra 8-day, Aqua 8-day, Terra-Aqua combined 8- and 4-day products, was generated as part of testing for the next version (Collection 5) of the MODerate resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) products. These products were analyzed for consistency between Terra and Aqua retrievals over the following data subsets in North America: single 8-day composite over the whole continent and annual time series over three selected MODIS tiles (1200 × 1200 km). The potential for combining retrievals from the two sensors to derive improved products by reducing the impact of environmental conditions and temporal compositing period was also explored. The results suggest no significant discrepancies between large area (from continent to MODIS tile) averages of the Terra and Aqua 8-day LAI and surface reflectances products. The differences over smaller regions, however, can be large due to the random nature of residual atmospheric effects. High quality retrievals from the radiative transfer based algorithm can be expected in 90-95% of the pixels with mostly herbaceous cover and about 50-75% of the pixels with woody vegetation during the growing season. The quality of retrievals during the growing season is mostly restricted by aerosol contamination of the MODIS data. The Terra-Aqua combined 8-day product helps to minimize this effect and increases the number of high quality retrievals by 10-20% over woody vegetation. The combined 8-day product does not improve the number of high quality retrievals during the winter period because the extent of snow contamination of Terra and Aqua observations is similar. Likewise, cloud contamination in the single-sensor and combined products is also similar. The LAI magnitudes, seasonal profiles and retrieval quality in the combined 4-day product are comparable to those in the single-sensor 8-day products. Thus, the combined 4-day product doubles the temporal resolution of the seasonal cycle, which facilitates phenology monitoring in application studies during vegetation transition periods. Both Terra and Aqua LAI products show anomalous seasonality in boreal needle leaf forests, due to limitations of the radiative transfer algorithm to model seasonal variations of MODIS surface reflectance data with respect to solar zenith angle. Finally, this study suggests that further improvement of the MODIS LAI products is mainly restricted by the accuracy of the MODIS observations.  相似文献   

19.
An algorithm for burned area mapping in Africa based on classification trees was developed using SPOT-VEGETATION (VGT) imagery. The derived 1 km spatial resolution burned area maps were compared with 30 m spatial resolution maps obtained with 13 Landsat ETM+ scenes, through linear regression analysis. The procedure quantifies the bias in burned area estimation present in the low spatial resolution burned area map. Good correspondence was observed for seven sites, with values of the coefficient of determination (R2) ranging from 0.787 to 0.983. Poorer agreement was observed in four sites (R2 values between 0.257 and 0.417), and intermediate values of R2 (0.670 and 0.613) were obtained for two sites. The observed variation in the level of agreement between the Landsat and VGT estimates of area burned results from differences in the spatial pattern and size distribution of burns in the different fire regimes encompassed by our analysis. Small and fragmented burned areas result in large underestimation at 1 km spatial resolution. When large and compact burned areas dominate the landscape, VGT estimates of burned area are accurate, although in certain situations there is some overestimation. Accuracy of VGT burned area estimates also depends on vegetation type. Results showed that in forest ecosystems VGT maps underestimate substantially the amount of burned area. The most accurate estimates were obtained for woodlands and grasslands. An overall linear regression fitted with the data from the 13 comparison sites revealed that there is a strong relationship between VGT and Landsat estimates of burned area, with a value of R2 of 0.754 and a slope of 0.803. Our findings indicate that burned area mapping based on 1 km spatial resolution VGT data provides adequate regional information.  相似文献   

20.
The objective of this study is to evaluate whether the retrieval of the leaf chlorophyll content and leaf area index (LAI) for precision agriculture application from hyperspectral data is significantly affected by data compression. This analysis was carried out using the hyperspectral data sets acquired by Compact Airborne Spectrographic Imager (CASI) over corn fields at L'Acadie experimental farm (Agriculture and Agri-Food Canada) during the summer of 2000 and over corn, soybean and wheat fields at the former Greenbelt farm (Agriculture and Agri-Food Canada) in three intensive field campaigns during the summer of 2001. Leaf chlorophyll content and LAI were retrieved from the original data and the reconstructed data compressed/decompressed by the compression algorithm called Successive approximation multi-stage vector quantization (SAMVQ) at compression ratios of 20:1, 30:1, and 50:1. The retrieved products were evaluated against the ground-truth.In the retrieval of leaf chlorophyll content (the first data set), the spatial patterns were examined in all of the images created from the original and reconstructed data and were proven to be visually unchanged, as expected. The data measures R2, absolute RMSE, and relative RMSE between the leaf chlorophyll content derived from the original and reconstructed data cubes, and the laboratory-measured values were calculated as well. The results show the retrieval accuracy of crop chlorophyll content is not significantly affected by SAMVQ at the compression ratios of 20:1, 30:1, and 50:1, relative to the observed uncertainties in ground truth values. In the retrieval of LAI (the second data set), qualitative and quantitative analyses were performed. The results show that the spatial and temporal patterns of the LAI images are not significantly affected by SAMVQ and the retrieval accuracies measured by the R2, absolute RMSE, and relative RMSE between the ground-measured LAI and the estimated LAI are not significantly affected by the data compression either.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号