共查询到20条相似文献,搜索用时 15 毫秒
1.
EAG-Active Herbivore-Induced Plant Volatiles Modify Behavioral Responses and Host Attack by An Egg Parasitoid 总被引:1,自引:1,他引:1
Volatiles emitted by plants in response to feeding by Lygus species were tested in neurophysiological, behavioral, and parasitism trials with Anaphes iole, an egg parasitoid of Lygus. Electroantennogram analyses indicated that A. iole antennae responded to most herbivore-induced plant volatiles (HIPVs) tested and that females were usually more responsive than males. Antennal responses to (Z)-3-hexenyl acetate and methyl salicylate were among the strongest. Behavioral assays in a four-arm olfactometer demonstrated that response of female wasps to (Z)-3-hexenyl acetate varied greatly depending on preconditioning regime. Preconditioning wasps to complex host-plant odors led to stronger preference than did a single preconditioning stimulus, i.e., (Z)-3-hexenyl acetate. In a horizontal wind tunnel, female wasps were attracted by methyl salicylate and alpha-farnesene. Parasitism of Lygus lineolaris eggs by A. iole in a cotton field was greater when the eggs were associated with (Z)-3-hexenyl acetate or alpha-farnesene than with controls. Overall, the results of this study show that A. iole can perceive a variety of plant volatiles released after its host damages plants, that the degree of associative learning in A. iole can be manipulated based on preconditioning regime, and that single synthetic HIPVs are attractive to A. iole and can be used to increase attack rates on host eggs. Therefore, it appears that HIPVs have potential for use in suppression of Lygus population densities. 相似文献
2.
Learning of Herbivore-Induced and Nonspecific Plant Volatiles by a Parasitoid,Cotesia kariyai 总被引:1,自引:0,他引:1
Learning of host-induced plant volatiles by Cotesia kariyai females was examined with synthetic chemicals in a wind tunnel. Wasps were preconditioned by exposure to volatiles and feces simultaneously. A blend of four chemicals, geranyl acetate, -caryophyllene, (E)--farnesene, and indole, which are known to be specifically released from plants infested by host larvae Mythimna separata (host-induced blend), elicited a response in naive C. kariyai, but did not enhance the response after conditioning. A blend of five chemicals, (E)-2-hexenal, (Z)-3-hexen-1-ol, (Z)-3-hexen-1-yl acetate, -myrcene, and linalool, which are known to be released not only from plants infested by the host larvae, but also from artificially damaged plants or undamaged ones (unspecific blend), elicited little response in naive wasps, but significantly enhanced the wasps' response after conditioning. With a blend of the above nine chemicals, wasps could learn the blend at lower concentrations than they did in the nonspecific blend. Hence, both the host-induced and nonspecific volatile compounds appear to be important for C. kariyai females to learn the chemical cues in host location. 相似文献
3.
Fatouros NE van Loon JJ Hordijk KA Smid HM Dicke M 《Journal of chemical ecology》2005,31(9):2033-2047
Herbivore feeding induces plants to emit volatiles that are detectable and reliable cues for foraging parasitoids, which allows them to perform oriented host searching. We investigated whether these plant volatiles play a role in avoiding parasitoid competition by discriminating parasitized from unparasitized hosts in flight. In a wind tunnel set-up, we used mechanically damaged plants treated with regurgitant containing elicitors to simulate and standardize herbivore feeding. The solitary parasitoid Cotesia rubecula discriminated among volatile blends from Brussels sprouts plants treated with regurgitant of unparasitized Pieris rapae or P. brassicae caterpillars over blends emitted by plants treated with regurgitant of parasitized caterpillars. The gregarious Cotesia glomerata discriminated between volatiles induced by regurgitant from parasitized and unparasitized caterpillars of its major host species, P. brassicae. Gas chromatography-mass spectrometry analysis of headspace odors revealed that cabbage plants treated with regurgitant of parasitized P. brassicae caterpillars emitted lower amounts of volatiles than plants treated with unparasitized caterpillars. We demonstrate (1) that parasitoids can detect, in flight, whether their hosts contain competitors, and (2) that plants reduce the production of specific herbivore-induced volatiles after a successful recruitment of their bodyguards. As the induced volatiles bear biosynthetic and ecological costs to plants, downregulation of their production has adaptive value. These findings add a new level of intricacy to plant–parasitoid interactions. 相似文献
4.
The Impact of Herbivore-Induced Plant Volatiles on Parasitoid Foraging Success: A General Deterministic Model 总被引:1,自引:0,他引:1
Parasitoids respond to volatiles that plants produce when injured by herbivores. A considerable body of literature addresses the chemical pathways of herbivore-induced volatile production. However, there is almost no theory or data on how timing of volatile release in relationship to host availability for parasitization impacts the utility of these cues to parasitoids and on the extent that this volatile release timing might increase or decrease the percent of herbivores that become parasitized. This kind of information is critical in judging the benefits that might accrue from a breeding program aimed at enhancing herbivore-responsive volatile production. We developed a general model to begin examining this issue by using available parameters from two tritrophic systems. The model uses herbivore oviposition, development, and mortality rates, linked to a range of plant volatile induction and cessation periods for calculating the proportion of plants in a field that are (1) not producing volatiles but occupied by suitable herbivore hosts, (2) producing volatiles and occupied by suitable herbivore hosts, (3) producing volatiles but not occupied by suitable herbivore hosts, and (4) not producing volatiles and not occupied by suitable herbivore hosts. The impact of the plant volatiles on parasitoid foraging success is then determined by comparing the expected number of hosts parasitized when the parasitoid focuses solely on the volatile-producing plants to when it forages randomly among all plants. Under some conditions, parasitoids can attack three times more herbivores if they focus on volatile-producing plants. However, when we simulate plants that take several days to cease volatile production after pupation or death of the herbivore, parasitization rate does not increase when parasitoids use volatiles as cues. The utility of the volatile cues is consistently greater when a smaller proportion of plants is occupied by herbivores, indicating that their usefulness may be reduced to zero in fields saturated with volatiles. 相似文献
5.
The effect of diet on sequestration of iridoid glycosides was examined in larvae of three lepidopteran species. Larvae were
reared upon Plantago major, or P. lanceolata, or switched from one to the other in the penultimate instar. Junonia coenia is a specialist on iridoid glycoside-producing plants, whereas the arctiids, Spilosoma congrua and Estigmene acrea, are both polyphagous and eat iridoid-producing plants. All species sequestered iridoids. The specialist J. coenia sequestered from three to seven times the amounts sequestered by the two generalist species. Junonia coenia iridoid glycoside content depended on diet, and they sequestered from 5 to 15% dry weight iridoid glycosides. Estigmene acrea iridoid glycoside sequestration was relatively low, around 2% dry weight and did not vary with diet. Spilosoma congrua sequestration varied with diet and ranged from approximately 3 to 6% dry weight. 相似文献
6.
Specificity of Systemically Released Cotton Volatiles as Attractants for Specialist and Generalist Parasitic Wasps 总被引:11,自引:4,他引:11
Cotton plants under herbivore attack release volatile semiochemicals that attract natural enemies of the herbivores to the damaged plant. The volatiles released in response to herbivory are not only released from the damaged leaves but from the entire cotton plant. We found that cotton plants that released myrcene, (Z)-3-hexenyl acetate, (E)--ocimene, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene, (E)--farnesene, and (E, E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene systemically from undamaged leaves of caterpillar damaged plants were attractive to the generalist parasitoid Cotesia marginiventris and the specialist parasitoid Microplitis croceipes. Plants from which the caterpillar damaged leaves were removed and that released those compounds systemically were significantly preferred over undamaged control plants in two-choice experiments in a flight tunnel. Artificially damaged cotton plants that released green leafy volatiles and constitutive terpenoids were less attractive for M. croceipes and C. marginiventris. Only C. marginiventris preferred artificially damaged plants over undamaged control plants, whereas M. croceipes showed no preference. The apparent lack of specificity of systemically released compounds in response to different herbivores feeding on the lower leaves is discussed. 相似文献
7.
We elucidated the source of chemical cues in a system where the host is concealed and the parasitoid has no direct contact with the host larvae or its frass. Behavioral bioassays with Pholetesor bicolor, a larval parasitoid of the apple leafminer, Phyllonorycter pomonella, showed that the herbivore-damaged leaf epidermis (mine) elicited ovipositional probing of parasitoid females. Probing on larvae or frass was seldom observed. Hexane extracts of mines elicited the same ovipositional probing behavior while no response was observed with hexane extracts of larvae or frass or with methanol and diethyl ether extracts. In addition, gas chromatographic analyses showed qualitatively and quantitatively different profiles of these three components of the host-plant complex. By far the highest quantities and also the highest number of compounds was recovered from mine extracts. Identified compounds in the mine included six alkanes (n-C
27 to n-C
33) and squalene (C30H50). A synthetic blend of the seven compounds was slightly less active in biotests than the equivalent natural blend, as shown by a time delay in female response. We conclude that this leafminer parasitoid does not rely on host-derived kairomones but instead uses plant-derived semiochemicals for host location and ovipositional probing behavior. 相似文献
8.
Stereochemistry of Host Plant Monoterpenes as Mate Location Cues for the Gall Wasp Antistrophus rufus 总被引:1,自引:0,他引:1
In spring, adult males of the gall wasp Antistrophus rufus L. emerge from inconspicuous galls in stems of their host plant Silphium laciniatum L. and search for sites on stems where females will later emerge. The behavior of males suggests that they use olfaction rather than visual or tactile cues in searching for mates. In an earlier publication, we reported that galls of A. rufus were associated with changes in enantiomeric ratios of alpha- and beta-pinene emitted by plant stems, and hypothesized that monoterpene stereochemistry served as a mate location cue for adult males. Here, we support this hypothesis with bioassays that demonstrate that males can discriminate between galled and ungalled stems, as well as between blends of synthetic monoterpenes with ratios of enantiomers representative of galled and ungalled stems. 相似文献
9.
10.
Lipaphis erysimi (Kaltenbach) is a specialist crucifer feeding aphid and Myzus persicae (Sulzer) is a generalist feeding aphid. The foraging behavior of Diaeretiella rapae (McIntosh), a parasitoid with the ability to parasitize both of these species, was assessed using a series of attack rate and success bioassays, with turnip, Brassica rapa var rapifera, as the host plant. The attack rate of D. rapae was significantly greater on L. erysimi than on M. persicae when aphids were feeding on turnip leaf discs in Petri dishes, irrespective of the aphid species upon which the parasitoids were originally reared. Attack rate bioassays with leaf discs absent, using both satiated and starved aphids, revealed that background chemistry and internal aphid chemistry may have small effects on attack rate. Excision of D. rapae pupae from mummy cases and subsequent use of the fully developed adults in attack rate bioassays showed that cues received by D. rapae at the time of adult emergence provide cues that prime D. rapae to attack L. erysimi at a greater rate than M. persicae. However, the relative success of D. rapae on these two aphid species, in terms of the percentage of attacks resulting in a successful adult parasitoid, was not significantly different. 相似文献
11.
Đurović Gordana Van Neerbos Francine A. C. Bossaert Sofie Herrera-Malaver Beatriz Steensels Jan Arnó Judit Wäckers Felix Sobhy Islam S. Verstrepen Kevin J. Jacquemyn Hans Lievens Bart 《Journal of chemical ecology》2021,47(8-9):788-798
Journal of Chemical Ecology - There is increasing evidence that microorganisms, particularly fungi and bacteria, emit volatile compounds that mediate the foraging behaviour of insects and therefore... 相似文献
12.
E. Guerrieri G. M. Poppy W. Powell E. Tremblay F. Pennacchio 《Journal of chemical ecology》1999,25(6):1247-1261
In-flight orientation of the braconid Aphidius ervi in response to volatiles released from broad bean plants infested by the pea aphid, Acyrthosiphon pisum, was studied in a no-choice wind-tunnel bioassay. The role of aphid infestation level and duration, systemic production of volatiles by insect-free parts of the plant, and the specificity of aphid-induced volatiles on the flight behavior of the foraging female parasitoids were investigated. The upper insect-free part of a three-leaved broad bean plant, which was basally infested by a population of 40 A. pisum, released synomones detectable by A. ervi females after at least 48–72 hr of infestation, resulting in both significant increases in oriented flights and landings on the source compared with uninfested control plants. This suggests that volatiles involved in host-location by A. ervi are systemically released by broad bean plants either in response to circulation of aphid saliva, circulation of saliva-induced bioactive elicitors, or circulation of the synomones themselves. Air entrainment extracts of volatiles collected from a broad bean plant infested by the nonhost Aphis fabae or an uninfested broad bean plant elicited few oriented flights and landing responses by female parasitoids. These extracts were significantly less attractive than extracts collected from a broad bean plant infested by the host A. pisum, indicating the specificity of synomones elicited by different aphid species on the same plant species. 相似文献
13.
Takeshi Shimoda Junji Takabayashi Wataru Ashihara Akio Takafuji 《Journal of chemical ecology》1997,23(8):2033-2048
We studied the response of a predatory thrips, Scolothrips takahashii, towards herbivore-induced plant volatiles emitted by Lima bean plants infested by two-spotted spider mites Tetranychus urticae (green form). Tests were conducted with a Y-tube olfactometer in the laboratory and with traps under field conditions. The odor of artificially damaged and uninfested Lima bean leaves was not more attractive than clean air in the Y-tube olfactometer. The predatory insects showed a greater preference for Lima bean leaves infested by the two-spotted spider mites than for either clean air or uninfested bean leaves. They showed the same preference towards infested leaves from which all spider mites and their visible products had been removed. Neither the spider mites themselves nor their products attracted the predators. In a satsuma mandarin grove, two traps with infested Lima bean plants as an odor source attracted 42 adult S. takahashii in 55 days, whereas no S. takahashii were trapped in two control traps with uninfested Lima bean plants during the same period. No S. takahashii were found during this period in the vicinity of either the sample traps or the control traps (5-m radius of each trap). These data showed that S. takahashii use herbivore-induced plant volatiles in their foraging behavior in natural ecosystems. 相似文献
14.
Thines NJ Shipley LA Bassman JH Fellman JK Mattison DS Slusser JR Gao W 《Journal of chemical ecology》2007,33(5):1025-1039
Ultraviolet-B (UV-B) radiation has been increasing in temperate latitudes in recent decades and is expected to continue rising
for some time. Enhanced UV-B radiation can change plant chemistry, yet the effects of these changes on mammalian herbivores
are unknown. To examine the influence of enhanced UV-B radiation on nutrition of a specialist and generalist hindgut fermenter,
we measured nutritional and chemical constituents of three common North American range plants, big sagebrush (Artemisia tridentata), yarrow (Achillea millefolium), and bluebunch wheatgrass (Pseudoregneria spicata), and how these changes influenced in vitro dry matter digestibility and in vivo digestibility by pygmy rabbits (Brachylagus idahoensis) and eastern cottontails (Sylvilagus floridanus). Forages were irradiated for 3 mo with ambient (1×) or supplemental (1.6×) UV-B radiation representing a 15% ozone depletion
for Pullman, WA, USA. Enhanced UV-B radiation had minimal effects on the nutritional content and the tannin-binding capacity
of forages. Similarly, the terpene concentration in sagebrush and yarrow was not affected by higher UV-B irradiances. Flavonoid
compounds increased in sagebrush but decreased in yarrow. Rabbit preference and intake was not affected by treatment levels
for any forage species and no differences were found between treatments for dry matter, fiber, protein digestibility, and
apparent digestible energy. 相似文献
15.
Olfactory Cues,Visual Cues,and Semiochemical Diversity Interact During Host Location by Invasive Forest Beetles 总被引:1,自引:0,他引:1
Jessica L. Kerr Dave Kelly Martin K.-F. Bader Eckehard G. Brockerhoff 《Journal of chemical ecology》2017,43(1):17-25
Plant-feeding insects use visual and olfactory cues (shape, color, plant volatiles) for host location, but the relative importance of different cues and interactions with non-host-plant volatiles in ecosystems of varying plant biodiversity is unclear for most species. We studied invasive bark beetles and wood borers associated with pine trees to characterize interactions among color, host and non-host volatiles, by employing traps that mimic tree trunks. Cross-vane flight intercept traps (black, green, red, white, yellow, clear) and black funnel traps were used with and without attractants (α-pinene + ethanol), repellents (non-host green leaf volatiles, ‘GLV’), and attractant/repellent combinations in four pine forests in New Zealand. We trapped 274,594 Hylurgus ligniperda, 7842 Hylastes ater, and 16,301 Arhopalus ferus. Trap color, attractant, and color × attractant effects were highly significant. Overall, black and red traps had the highest catches, irrespective of the presence of attractants. Alpha-pinene plus ethanol increased trap catch of H. ligniperda 200-fold but only 6-fold for H. ater and 2-fold for A. ferus. Green leaf volatiles had a substantial repellent effect on trap catch of H. ligniperda but less on H. ater and A. ferus. Attack by H. ligniperda was halved when logs were treated with GLV, and a similar effect was observed when logs were placed among broadleaved understory shrubs emitting GLV. Overall, H. ligniperda was most strongly affected by the olfactory cues used, whereas H. ater and A. ferus were more strongly affected by visual cues. Collectively, the results support the semiochemical diversity hypothesis, indicating that non-host plant volatiles from diverse plant communities or artificial dispensers can contribute to resistance against herbivores by partly disrupting host location. 相似文献
16.
Comparative Detoxification of Plant (Magnolia virginiana) Allelochemicals by Generalist and Specialist Saturniid Silkmoths 总被引:1,自引:1,他引:1
K. S. Johnson 《Journal of chemical ecology》1999,25(2):253-269
The foliage of sweetbay magnolia (Magnolia virginana) contains at least two biologically active phenylpropanoid compounds (magnolol and a biphenyl ether) that are toxic to a number of generalist insect herbivores. These compounds have little effect on caterpillars of the sweetbay silkmoth, C. securifera, which is a specialist on sweetbay, but they are toxic to two closely related silkmoths, C. angulifera and C. promethea. To understand the influence of phytochemistry on the evolution of host use and feeding specialization in Callosamia, the detoxification capability of C. securifera was compared with that of C. angulifera and C. promethea. Degradation of magnolol and the biphenyl ether by midgut homogenate of the sweetbay specialist was NADPH-dependent and inhibited by piperonyl butoxide, suggesting the involvement of cytochrome P-450 detoxification enzymes. Both were degraded three times faster in the specialist compared to the unadapted herbivores. Higher rates of degradation could not be induced in the polyphagous C. promethea by a mixture of magnolol and the biphenyl ether or by the P-450 inducer pentamethylbenzene, nor did activity vary significantly when larvae were reared on different host plants. Use of sweetbay by Callosamia silkmoths appears to be dependent on their ability to degrade host toxins rapidly via midgut detoxification enzymes. Moreover, the intraspecific comparisons contradict the common prediction that higher levels of cytochrome P-450 activity are found in more polyphagous species; instead, P-450 activity is more closely associated with specific chemical attributes of the herbivores' host plants. 相似文献
17.
Lisa A. Shipley Edward M. Davis Laura A. Felicetti Stuart McLean Jennifer Sorensen Forbey 《Journal of chemical ecology》2012,38(9):1178-1189
Pygmy rabbits (Brachylagus idahoensis) are one of only three vertebrates that subsist virtually exclusively on sagebrush (Artemisia spp.), which contains high levels of monoterpenes that can be toxic. We examined the mechanisms used by specialist pygmy rabbits to eliminate 1,8-cineole, a monoterpene of sagebrush, and compared them with those of cottontail rabbits (Sylvilagus nuttalli), a generalist herbivore. Rabbits were offered food pellets with increasing concentrations of cineole, and we measured voluntary intake and excretion of cineole metabolites in feces and urine. We expected pygmy rabbits to consume more, but excrete cineole more rapidly by using less-energetically expensive methods of detoxification than cottontails. Pygmy rabbits consumed 3–5 times more cineole than cottontails relative to their metabolic body mass, and excreted up to 2 times more cineole metabolites in their urine than did cottontails. Urinary metabolites excreted by pygmy rabbits were 20?% more highly-oxidized and 6 times less-conjugated than those of cottontails. Twenty percent of all cineole metabolites recovered from pygmy rabbits were in feces, whereas cottontails did not excrete fecal metabolites. When compared to other mammals that consume cineole, pygmy rabbits voluntarily consumed more, and excreted more cineole metabolites in feces, but they excreted less oxidized and more conjugated cineole metabolites in urine. Pygmy rabbits seem to have a greater capacity to minimize systemic exposure to cineole than do cottontails, and other cineole-consumers, by minimizing absorption and maximizing detoxification of ingested cineole. However, mechanisms that lower systemic exposure to cineole may come with a higher energetic cost in pygmy rabbits than in other mammalian herbivores. 相似文献
18.
Xin Yi PeiDan Wang Zheng Wang Jun Cai MeiYing Hu GuoHua Zhong 《Journal of chemical ecology》2014,40(3):267-275
Insects have evolved many physiological and behavioral adaptations to recognize external complex chemicals. Olfaction plays an important role in perceiving volatile chemicals, utilizing them to locate host sites, conspecifics, and enemies. Chemosensory proteins (CSPs) are present in high concentrations within the sensory sensilla of insects and are endowed with a heterogeneous range of functions. However, direct evidence for the involvement of CSPs in olfactory function is still lacking. In this study, a fluorescence-based ligand binding assay using Bdor-CSP2 illustrated its ability to bind the majority of the selected ligands of different shapes and chemical structures that are ecologically significant, host plant volatiles of Bactrocera dorsalis. RNAi-mediated silencing coupled with electrophysiological tests showed lower electrophysiological responses to (3Z)-hex-3-en-1-ol, trans-2-hexenal, 6-methylhept-5-en-2-one, and 3-methylbutyl acetate in dsBdor CSP2 treated flies compared with the untreated controls. The reduced expression of Bdor-CSP2 by RNA interference was confirmed by semi-quantitative PCR, real-time quantitative PCR and Western blot, which suggested the RNAi-treatment was responsible for the observed reduction of antennal responses in EAG recordings. These data suggest that the expression of Bdor-CSP2 is necessary for the recognition of antennal responses to some plant host volatiles by B. dorsalis. 相似文献
19.
Identification and Synthesis of a Kairomone Mediating Host Location by Two Parasitoid Species of the Cassava Mealybug Phenacoccus herreni 总被引:2,自引:0,他引:2
Calatayud PA Auger J Thibout E Rousset S Caicedo AM Calatayud S Buschmann H Guillaud J Mandon N Bellotti AC 《Journal of chemical ecology》2001,27(11):2203-2217
Two encyrtid species, Acerophagus coccois and Aenasius vexans, parasitoids of the cassava mealybug Phenacoccus herreni use a contact kairomone from the body surface of their host as a host-location stimulant. The kairomone was synthesized and identified as O-caffeoylserine based on a combination of chromatographic methods. The synthetic compound was determined to be active. 相似文献