首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Columbianadin (CBN) is a bioactive coumarin-type compound with various biological activities. However, the action of CBN on the ionic mechanism remains largely uncertain, albeit it was reported to inhibit voltage-gated Ca2+ current or to modulate TRP-channel activity. In this study, whole-cell patch-clamp current recordings were undertaken to explore the modifications of CBN or other related compounds on ionic currents in excitable cells (e.g., pituitary GH3 cells and HL-1 atrial cardiomyocytes). GH3-cell exposure to CBN differentially decreased peak or late component of voltage-gated Na+ current (INa) with effective IC50 of 14.7 or 2.8 µM, respectively. The inactivation time course of INa activated by short depolarization became fastened in the presence of CBN with estimated KD value of 3.15 µM. The peak INa diminished by 10 µM CBN was further suppressed by subsequent addition of either sesamin (10 µM), ranolazine (10 µM), or tetrodotoxin (1 µM), but it was reversed by 10 µM tefluthrin (Tef); however, further application of 10 µM nimodipine failed to alter CBN-mediated inhibition of INa. CBN (10 µM) shifted the midpoint of inactivation curve of INa to the leftward direction. The CBN-mediated inhibition of peak INa exhibited tonic and use-dependent characteristics. Using triangular ramp pulse, the hysteresis of persistent INa enhanced by Tef was noticed, and the behavior was attenuated by subsequent addition of CBN. The delayed-rectifier or erg-mediated K+ current was mildly inhibited by 10 µM CBN, while it also slightly inhibited the amplitude of hyperpolarization-activated cation current. In HL-1 atrial cardiomyocytes, CBN inhibited peak INa and raised the inactivation rate of the current; moreover, further application of 10 µM Tef attenuated CBN-mediated decrease in INa. Collectively, this study provides an important yet unidentified finding revealing that CBN modifies INa in electrically excitable cells.  相似文献   

2.
Midazolam (MDZ) could affect lymphocyte immune functions. However, the influence of MDZ on cell’s K+ currents has never been investigated. Thus, in the present study, the effects of MDZ on Jurkat T lymphocytes were studied using the patch-clamp technique. Results showed that MDZ suppressed the amplitude of delayed-rectifier K+ current (IK(DR)) in concentration-, time-, and state-dependent manners. The IC50 for MDZ-mediated reduction of IK(DR) density was 5.87 μM. Increasing MDZ concentration raised the rate of current-density inactivation and its inhibitory action on IK(DR) density was estimated with a dissociation constant of 5.14 μM. In addition, the inactivation curve of IK(DR) associated with MDZ was shifted to a hyperpolarized potential with no change on the slope factor. MDZ-induced inhibition of IK(DR) was not reversed by flumazenil. In addition, the activity of intermediate-conductance Ca2+-activated K+ (IKCa) channels was suppressed by MDZ. Furthermore, inhibition by MDZ on both IK(DR) and IKCa-channel activity appeared to be independent from GABAA receptors and affected immune-regulating cytokine expression in LPS/PMA-treated human T lymphocytes. In conclusion, MDZ suppressed current density of IK(DR) in concentration-, time-, and state-dependent manners in Jurkat T-lymphocytes and affected immune-regulating cytokine expression in LPS/PMA-treated human T lymphocytes.  相似文献   

3.
Oral squamous cell carcinoma (OSCC) is a common cancer with poor prognosis. Transient Receptor Potential Ankyrin 1 (TRPA1) and Vanilloid 1 (TRPV1) receptors are non-selective cation channels expressed on primary sensory neurons and epithelial and immune cells. TRPV1 mRNA and immunopositivity, as well as TRPA1-like immunoreactivity upregulation, were demonstrated in OSCC, but selectivity problems with the antibodies still raise questions and their functional relevance is unclear. Therefore, here, we investigated TRPA1 and TRPV1 expressions in OSCC and analyzed their functions. TRPA1 and TRPV1 mRNA were determined by RNAscope in situ hybridization and qPCR. Radioactive 45Ca2+ uptake and ATP-based luminescence indicating cell viability were measured in PE/CA-PJ41 cells in response to the TRPA1 agonist allyl-isothiocyanate (AITC) and TRPV1 agonist capsaicin to determine receptor function. Both TRPA1 and TRPV1 mRNA are expressed in the squamous epithelium of the human oral mucosa and in PE/CA-PJ41 cells, and their expressions are significantly upregulated in OSCC compared to healthy mucosa. TRPA1 and TRPV1 activation (100 µM AITC, 100 nM capsaicin) induced 45Ca2+-influx into PE/CA-PJ41 cells. Both AITC (10 nM–5 µM) and capsaicin (100 nM–45 µM) reduced cell viability, reaching significant decrease at 100 nM AITC and 45 µM capsaicin. We provide the first evidence for the presence of non-neuronal TRPA1 receptor in the OSCC and confirm the expression of TRPV1 channel. These channels are functionally active and might regulate cancer cell viability.  相似文献   

4.
Nociceptors sense hazards via plasmalemmal cation channels, including transient receptor potential vanilloid 1 (TRPV1). Nerve growth factor (NGF) sensitises TRPV1 to capsaicin (CAPS), modulates nociceptor excitability and induces thermal hyperalgesia, but cellular mechanisms remain unclear. Confocal microscopy was used to image changes in intracellular Ca2+ concentration ([Ca2+]i) across neuronal populations in dorsal root ganglia (DRG) explants from pirt-GCaMP3 adult mice, which express a fluorescent reporter in their sensory neurons. Raised [Ca2+]i was detected in 84 neurons of three DRG explants exposed to NGF (100 ng/mL) and most (96%) of these were also excited by 1 μM CAPS. NGF elevated [Ca2+]i in about one-third of the neurons stimulated by 1 μM CAPS, whether applied before or after the latter. In neurons excitable by NGF, CAPS-evoked [Ca2+]i signals appeared significantly sooner (e.g., respective lags of 1.0 ± 0.1 and 1.9 ± 0.1 min), were much (>30%) brighter and lasted longer (6.6 ± 0.4 vs. 3.9 ± 0.2 min) relative to those non-responsive to the neurotrophin. CAPS tachyphylaxis lowered signal intensity by ~60% but was largely prevented by NGF. Increasing CAPS from 1 to 10 μM nearly doubled the number of cells activated but only modestly increased the amount co-activated by NGF. In conclusion, a sub-population of the CAPS-sensitive neurons in adult mouse DRG that can be excited by NGF is more sensitive to CAPS, responds with stronger signals and is further sensitised by transient exposure to the neurotrophin.  相似文献   

5.
6.
Mirogabalin (MGB, Tarlige®), an inhibitor of the α2δ-1 subunit of voltage-gated Ca2+ (CaV) channels, is used as a way to alleviate peripheral neuropathic pain and diabetic neuropathy. However, to what extent MGB modifies the magnitude, gating, and/or hysteresis of various types of plasmalemmal ionic currents remains largely unexplored. In pituitary tumor (GH3) cells, we found that MGB was effective at suppressing the peak (transient, INa(T)) and sustained (late, INa(L)) components of the voltage-gated Na+ current (INa) in a concentration-dependent manner, with an effective IC50 of 19.5 and 7.3 μM, respectively, while the KD value calculated on the basis of minimum reaction scheme was 8.2 μM. The recovery of INa(T) inactivation slowed in the presence of MGB, although the overall current–voltage relation of INa(T) was unaltered; however, there was a leftward shift in the inactivation curve of the current. The magnitude of the window (INa(W)) or resurgent INa (INa(R)) evoked by the respective ascending or descending ramp pulse (Vramp) was reduced during cell exposure to MGB. MGB-induced attenuation in INa(W) or INa(R) was reversed by the further addition of tefluthrin, a pyrethroid insecticide known to stimulate INa. MGB also effectively lessened the strength of voltage-dependent hysteresis of persistent INa in response to the isosceles triangular Vramp. The cumulative inhibition of INa(T), evoked by pulse train stimulation, was enhanced in its presence. Taken together, in addition to the inhibition of CaV channels, the NaV channel attenuation produced by MGB might have an impact in its analgesic effects occurring in vivo.  相似文献   

7.
Lacosamide (Vimpat®, LCS) is widely known as a functionalized amino acid with promising anti-convulsant properties; however, adverse events during its use have gradually appeared. Despite its inhibitory effect on voltage-gated Na+ current (INa), the modifications on varying types of ionic currents caused by this drug remain largely unexplored. In pituitary tumor (GH3) cells, we found that the presence of LCS concentration-dependently decreased the amplitude of A-type K+ current (IK(A)) elicited in response to membrane depolarization. The IK(A) amplitude in these cells was sensitive to attenuation by the application of 4-aminopyridine, 4-aminopyridine-3-methanol, or capsaicin but not by that of tetraethylammonium chloride. The effective IC50 value required for its reduction in peak or sustained IK(A) was calculated to be 102 or 42 µM, respectively, while the value of the dissociation constant (KD) estimated from the slow component in IK(A) inactivation at varying LCS concentrations was 52 µM. By use of two-step voltage protocol, the presence of this drug resulted in a rightward shift in the steady-state inactivation curve of IK(A) as well as in a slowing in the recovery time course of the current block; however, no change in the gating charge of the inactivation curve was detected in its presence. Moreover, the LCS addition led to an attenuation in the degree of voltage-dependent hysteresis for IK(A) elicitation by long-duration triangular ramp voltage commands. Likewise, the IK(A) identified in mouse mHippoE-14 neurons was also sensitive to block by LCS, coincident with an elevation in the current inactivation rate. Collectively, apart from its canonical action on INa inhibition, LCS was effective at altering the amplitude, gating, and hysteresis of IK(A) in excitable cells. The modulatory actions on IK(A), caused by LCS, could interfere with the functional activities of electrically excitable cells (e.g., pituitary tumor cells or hippocampal neurons).  相似文献   

8.
Mag-Fluo-4 has revealed differences in the kinetics of the Ca2+ transients of mammalian fiber types (I, IIA, IIX, and IIB). We simulated the changes in [Ca2+] through the sarcomere of these four fiber types, considering classical (troponin –Tn–, parvalbumin –Pv–, adenosine triphosphate –ATP–, sarcoplasmic reticulum Ca2+ pump –SERCA–, and dye) and new (mitochondria –MITO–, Na+/Ca2+ exchanger –NCX–, and store-operated calcium entry –SOCE–) Ca2+ binding sites, during single and tetanic stimulation. We found that during a single twitch, the sarcoplasmic peak [Ca2+] for fibers type IIB and IIX was around 16 µM, and for fibers type I and IIA reached 10–13 µM. The release rate in fibers type I, IIA, IIX, and IIB was 64.8, 153.6, 238.8, and 244.5 µM ms−1, respectively. Both the pattern of change and the peak concentrations of the Ca2+-bound species in the sarcoplasm (Tn, PV, ATP, and dye), the sarcolemma (NCX, SOCE), and the SR (SERCA) showed the order IIB ≥ IIX > IIA > I. The capacity of the NCX was 2.5, 1.3, 0.9, and 0.8% of the capacity of SERCA, for fibers type I, IIA, IIX, and IIB, respectively. MITO peak [Ca2+] ranged from 0.93 to 0.23 µM, in fibers type I and IIB, respectively, while intermediate values were obtained in fibers IIA and IIX. The latter numbers doubled during tetanic stimulation. In conclusion, we presented a comprehensive mathematical model of the excitation–contraction coupling that integrated most classical and novel Ca2+ handling mechanisms, overcoming the limitations of the fast- vs. slow-fibers dichotomy and the use of slow dyes.  相似文献   

9.
High-quality Ca0.8Dy0.2MnO3 nano-powders were synthesized by the solution combustion process. The size of the synthesized Ca0.8Dy0.2MnO3 powders was approximately 23 nm. The green pellets were sintered at 1150-1300°C at a step size of 50°C. Sintered Ca0.8Dy0.2MnO3 bodies crystallized in the perovskite structure with an orthorhombic symmetry. The sintering temperature did not affect the Seebeck coefficient, but significantly affected the electrical conductivity. The electrical conductivity of Ca0.8Dy0.2MnO3 increased with increasing temperature, indicating a semiconducting behavior. The absolute value of the Seebeck coefficient gradually increased with an increase in temperature. The highest power factor (3.7 × 10-5 Wm-1 K-2 at 800°C) was obtained for Ca0.8Dy0.2MnO3 sintered at 1,250°C. In this study, we investigated the microstructure and thermoelectric properties of Ca0.8Dy0.2MnO3, depending on sintering temperature.  相似文献   

10.
Ca2+ entry through Cav1.3 Ca2+ channels plays essential roles in diverse physiological events. We employed yeast-two-hybrid (Y2H) assays to mine novel proteins interacting with Cav1.3 and found Snapin2, a synaptic protein, as a partner interacting with the long carboxyl terminus (CTL) of rat Cav1.3L variant. Co-expression of Snapin with Cav1.3L/Cavβ32δ2 subunits increased the peak current density or amplitude by about 2-fold in HEK-293 cells and Xenopus oocytes, without affecting voltage-dependent gating properties and calcium-dependent inactivation. However, the Snapin up-regulation effect was not found for rat Cav1.3S containing a short CT (CTS) in which a Snapin interaction site in the CTL was deficient. Luminometry and electrophysiology studies uncovered that Snapin co-expression did not alter the membrane expression of HA tagged Cav1.3L but increased the slope of tail current amplitudes plotted against ON-gating currents, indicating that Snapin increases the opening probability of Cav1.3L. Taken together, our results strongly suggest that Snapin directly interacts with the CTL of Cav1.3L, leading to up-regulation of Cav1.3L channel activity via facilitating channel opening probability.  相似文献   

11.
Rett syndrome (RTT) is a severe developmental disorder that is strongly linked to mutations in the MECP2 gene. RTT has been associated with sudden unexplained death and ECG QT interval prolongation. There are mixed reports regarding QT prolongation in mouse models of RTT, with some evidence that loss of Mecp2 function enhances cardiac late Na current, INa,Late. The present study was undertaken in order to investigate both ECG and ventricular AP characteristics in the Mecp2Null/Y male murine RTT model and to interrogate both fast INa and INa,Late in myocytes from the model. ECG recordings from 8–10-week-old Mecp2Null/Y male mice revealed prolongation of the QT and rate corrected QT (QTc) intervals and QRS widening compared to wild-type (WT) controls. Action potentials (APs) from Mecp2Null/Y myocytes exhibited longer APD75 and APD90 values, increased triangulation and instability. INa,Late was also significantly larger in Mecp2Null/Y than WT myocytes and was insensitive to the Nav1.8 inhibitor A-803467. Selective recordings of fast INa revealed a decrease in peak current amplitude without significant voltage shifts in activation or inactivation V0.5. Fast INa ‘window current’ was reduced in RTT myocytes; small but significant alterations of inactivation and reactivation time-courses were detected. Effects of two INa,Late inhibitors, ranolazine and GS-6615 (eleclazine), were investigated. Treatment with 30 µM ranolazine produced similar levels of inhibition of INa,Late in WT and Mecp2Null/Y myocytes, but produced ventricular AP prolongation not abbreviation. In contrast, 10 µM GS-6615 both inhibited INa,Late and shortened ventricular AP duration. The observed changes in INa and INa,Late can account for the corresponding ECG changes in this RTT model. GS-6615 merits further investigation as a potential treatment for QT prolongation in RTT.  相似文献   

12.
13.
14.
The Ca2+-ATPase is an integral transmembrane Ca2+ pump of the sarcoplasmic reticulum (SR). Crystallization of the cytoplasmic surface ATPase molecules of isolated scallop SR vesicles was studied at various calcium concentrations by negative stain electron microscopy. In the absence of ATP, round SR vesicles displaying an assembly of small crystalline patches of ATPase molecules were observed at 18 µM [Ca2+]. These partly transformed into tightly elongated vesicles containing ATPase crystalline arrays at low [Ca2+] (≤1.3 µM). The arrays were classified as ‘’tetramer’’, “two-rail” (like a railroad) and ‘’monomer’’. Their crystallinity was low, and they were unstable. In the presence of ATP (5 mM) at a low [Ca2+] of ~0.002 µM, “two-rail” arrays of high crystallinity appeared more frequently in the tightly elongated vesicles and the distinct tetramer arrays disappeared. During prolonged (~2.5 h) incubation, ATP was consumed and tetramer arrays reappeared. A specific ATPase inhibitor, thapsigargin, prevented both crystal formation and vesicle elongation in the presence of ATP. Together with the second part of this study, these data suggest that the ATPase forms tetramer units and longer tetramer crystalline arrays to elongate SR vesicles, and that the arrays transform into more stable “two-rail” forms in the presence of ATP at low [Ca2+].  相似文献   

15.
Nitric oxide (NO) is a well-known active site ligand and inhibitor of respiratory terminal oxidases. Here, we investigated the interaction of NO with a purified chimeric bcc-aa3 supercomplex composed of Mycobacterium tuberculosis cytochrome bcc and Mycobacterium smegmatis aa3-type terminal oxidase. Strikingly, we found that the enzyme in turnover with O2 and reductants is resistant to inhibition by the ligand, being able to metabolize NO at 25 °C with an apparent turnover number as high as ≈303 mol NO (mol enzyme)−1 min−1 at 30 µM NO. The rate of NO consumption proved to be proportional to that of O2 consumption, with 2.65 ± 0.19 molecules of NO being consumed per O2 molecule by the mycobacterial bcc-aa3. The enzyme was found to metabolize the ligand even under anaerobic reducing conditions with a turnover number of 2.8 ± 0.5 mol NO (mol enzyme)−1 min−1 at 25 °C and 8.4 µM NO. These results suggest a protective role of mycobacterial bcc-aa3 supercomplexes against NO stress.  相似文献   

16.
Solifenacin (Vesicare®, SOL), known to be a member of isoquinolines, is a muscarinic antagonist that has anticholinergic effect, and it has been beneficial in treating urinary incontinence and neurogenic detrusor overactivity. However, the information regarding the effects of SOL on membrane ionic currents is largely uncertain, despite its clinically wide use in patients with those disorders. In this study, the whole-cell current recordings revealed that upon membrane depolarization in pituitary GH3 cells, the exposure to SOL concentration-dependently increased the amplitude of M-type K+ current (IK(M)) with effective EC50 value of 0.34 μM. The activation time constant of IK(M) was concurrently shortened in the SOL presence, hence yielding the KD value of 0.55 μM based on minimal reaction scheme. As cells were exposed to SOL, the steady-state activation curve of IK(M) was shifted along the voltage axis to the left with no change in the gating charge of the current. Upon an isosceles-triangular ramp pulse, the hysteretic area of IK(M) was increased by adding SOL. As cells were continually exposed to SOL, further application of acetylcholine (1 μM) failed to modify SOL-stimulated IK(M); however, subsequent addition of thyrotropin releasing hormone (TRH, 1 μM) was able to counteract SOL-induced increase in IK(M) amplitude. In cell-attached single-channel current recordings, bath addition of SOL led to an increase in the activity of M-type K+ (KM) channels with no change in the single channel conductance; the mean open time of the channel became lengthened. In whole-cell current-clamp recordings, the SOL application reduced the firing of action potentials (APs) in GH3 cells; however, either subsequent addition of TRH or linopirdine was able to reverse SOL-mediated decrease in AP firing. In hippocampal mHippoE-14 neurons, the IK(M) was also stimulated by adding SOL. Altogether, findings from this study disclosed for the first time the effectiveness of SOL in interacting with KM channels and hence in stimulating IK(M) in electrically excitable cells, and this noticeable action appears to be independent of its antagonistic activity on the canonical binding to muscarinic receptors expressed in GH3 or mHippoE-14 cells.  相似文献   

17.
Interferon-β (IFN-β) is a pleiotropic cytokine used for therapy of multiple sclerosis, which is also effective in suppression of viral and bacterial infections and cancer. Recently, we reported a highly specific interaction between IFN-β and S100P lowering IFN-β cytotoxicity to cancer cells (Int J Biol Macromol. 2020; 143: 633–639). S100P is a member of large family of multifunctional Ca2+-binding proteins with cytokine-like activities. To probe selectivity of IFN-β—S100 interaction with respect to S100 proteins, we used surface plasmon resonance spectroscopy, chemical crosslinking, and crystal violet assay. Among the thirteen S100 proteins studied S100A1, S100A4, and S100A6 proteins exhibit strictly Ca2+-dependent binding to IFN-β with equilibrium dissociation constants, Kd, of 0.04–1.5 µM for their Ca2+-bound homodimeric forms. Calcium depletion abolishes the S100—IFN-β interactions. Monomerization of S100A1/A4/A6 decreases Kd values down to 0.11–1.0 nM. Interferon-α is unable of binding to the S100 proteins studied. S100A1/A4 proteins inhibit IFN-β-induced suppression of MCF-7 cells viability. The revealed direct influence of specific S100 proteins on IFN-β activity uncovers a novel regulatory role of particular S100 proteins, and opens up novel approaches to enhancement of therapeutic efficacy of IFN-β.  相似文献   

18.
Long-acting muscarinic antagonists (LAMAs) and short-acting β2-adrenoceptor agonists (SABAs) play important roles in remedy for COPD. To propel a translational research for development of bronchodilator therapy, synergistic effects between SABAs with LAMAs were examined focused on Ca2+ signaling using simultaneous records of isometric tension and F340/F380 in fura-2-loaded tracheal smooth muscle. Glycopyrronium (3 nM), a LAMA, modestly reduced methacholine (1 μM)-induced contraction. When procaterol, salbutamol and SABAs were applied in the presence of glycopyrronium, relaxant effects of these SABAs are markedly enhanced, and percent inhibition of tension was much greater than the sum of those for each agent and those expected from the BI theory. In contrast, percent inhibition of F340/F380 was not greater than those values. Bisindolylmaleimide, an inhibitor of protein kinase C (PKC), significantly increased the relaxant effect of LAMA without reducing F340/F380. Iberiotoxin, an inhibitor of large-conductance Ca2+-activated K+ (KCa) channels, significantly suppressed the effects of these combined agents with reducing F340/F380. In conclusion, combination of SABAs with LAMAs synergistically enhances inhibition of muscarinic contraction via decreasing both Ca2+ sensitization mediated by PKC and Ca2+ dynamics mediated by KCa channels. PKC and KCa channels may be molecular targets for cross talk between β2-adrenoceptors and muscarinic receptors.  相似文献   

19.
We report the investigation of boron substitution on structural, electrical, thermal, and thermoelectric properties of Ca3−xBxCo4O9 (x=0, 0.5, 0.75, and 1) in the temperature range between 300 K and 5 K. X-ray diffraction studies show that the Ca3Co4O9 phase is successfully preserved as the majority phase in the x=0.5 sample despite the small size of boron ions. Electrical transport measurements confirm that B3+ substitution for Ca2+ causes an increase in resistivity due to the decrease in carrier concentration. x=0.5 sample is found to have a Seebeck coefficient of 181 μV/K at room temperature which is ~1.5 times higher than that of the pure Ca3Co4O9. Our results indicate that the chemical pressure due to the large ionic radii difference between B3+ (0.27 Å) and Ca2+ (1 Å) enhances the thermoelectric properties as long as the unique crystal structure of Ca3Co4O9 is preserved.  相似文献   

20.
TMEM16A is a Ca2+-activated Cl channel that controls broad cellular processes ranging from mucus secretion to signal transduction and neuronal excitability. Recent studies have reported that membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is an important cofactor that allosterically regulates TMEM16A channel activity. However, the detailed regulatory actions of PIP2 in splice variants of TMEM16A remain unclear. Here, we demonstrated that the attenuation of membrane phosphoinositide levels selectively inhibited the current amplitude of the TMEM16A(ac) isoform by decreasing the slow, but not instantaneous, Cl currents, which are independent of the membrane potential and specific to PI(4,5)P2 depletion. The attenuation of endogenous PI(4,5)P2 levels by the activation of Danio rerio voltage-sensitive phosphatase (Dr-VSP) decreased the Cl currents of TMEM16A(ac) but not the TMEM16A(a) isoform, which was abolished by the co-expression of PIP 5-kinase type-1γ (PIPKIγ). Using the rapamycin-inducible dimerization of exogenous phosphoinositide phosphatases, we further revealed that the stimulatory effects of phosphoinositide on TMEM16A(ac) channels were similar in various membrane potentials and specific to PI(4,5)P2, not PI4P and PI(3,4,5)P3. Finally, we also confirmed that PI(4,5)P2 resynthesis is essential for TMEM16A(ac) recovery from Dr-VSP-induced current inhibition. Our data demonstrate that membrane PI(4,5)P2 selectively modulates the gating of the TMEM16A(ac) channel in an agonistic manner, which leads to the upregulation of TMEM16A(ac) functions in physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号