首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Active disturbance rejection control (ADRC) has been shown to be an effective tool in dealing with real world problems of dynamic uncertainties, disturbances, nonlinearities, etc. This paper addresses its existing limitations with plants that have a large transport delay. In particular, to overcome the delay, the extended state observer (ESO) in ADRC is modified to form a predictive ADRC, leading to significant improvements in the transient response and stability characteristics, as shown in extensive simulation studies and hardware-in-the-loop tests, as well as in the frequency response analysis. In this research, it is assumed that the amount of delay is approximately known, as is the approximated model of the plant. Even with such uncharacteristic assumptions for ADRC, the proposed method still exhibits significant improvements in both performance and robustness over the existing methods such as the dead-time compensator based on disturbance observer and the Filtered Smith Predictor, in the context of some well-known problems of chemical reactor and boiler control problems.  相似文献   

2.
Dong L  Zhang Y  Gao Z 《ISA transactions》2012,51(3):410-419
A novel design of a robust decentralized load frequency control (LFC) algorithm is proposed for an inter-connected three-area power system, for the purpose of regulating area control error (ACE) in the presence of system uncertainties and external disturbances. The design is based on the concept of active disturbance rejection control (ADRC). Estimating and mitigating the total effect of various uncertainties in real time, ADRC is particularly effective against a wide range of parameter variations, model uncertainties, and large disturbances. Furthermore, with only two tuning parameters, the controller provides a simple and easy-to-use solution to complex engineering problems in practice. Here, an ADRC-based LFC solution is developed for systems with turbines of various types, such as non-reheat, reheat, and hydraulic. The simulation results verified the effectiveness of the ADRC, in comparison with an existing PI-type controller tuned via genetic algorithm linear matrix inequalities (GALMIs). The comparison results show the superiority of the proposed solution. Moreover, the stability and robustness of the closed-loop system is studied using frequency-domain analysis.  相似文献   

3.
This paper deals with the critical issue in a wind energy conversion system (WECS) based on a direct-driven permanent magnet synchronous generator (PMSG): the rejection of lumped disturbance, including the system uncertainties in the internal dynamics and unknown external forces. To simultaneously track the motor speed in real time and capture the maximum power, a maximum power point tracking strategy is proposed based on active disturbance rejection control (ADRC) theory. In real application, system inertia, drive torque and some other parameters change in a wide range with the variations of disturbances and wind speeds, which substantially degrade the performance of WECS. The ADRC design must incorporate the available model information into an extended state observer (ESO) to compensate the lumped disturbance efficiently. Based on this principle, a model-compensation ADRC is proposed in this paper. Simulation study is conducted to evaluate the performance of the proposed control strategy. It is shown that the effect of lumped disturbance is compensated in a more effective way compared with the traditional ADRC approach.  相似文献   

4.
A disturbance rejection based control approach, active disturbance rejection control (ADRC), is proposed for hysteretic systems with unknown characteristics. It is an appealing alternative to hysteresis compensation because it does not require a detailed model of hysteresis, by treating the nonlinear hysteresis as a common disturbance and actively rejecting it. The stability characteristic of the ADRC is analyzed. It is shown that, in the face of the inherent dynamic uncertainties, the estimation and closed-loop tracking errors of ADRC are bounded, with their bounds monotonously decreasing with the observer and controller bandwidths, respectively. Simulation results on a typical hysteretic system further demonstrate the effectiveness of the proposed approach.  相似文献   

5.
为了解决永磁同步电机在多工况下转速易受到内外扰动的影响,提出一种基于延迟补偿的并行线性自抗扰控制策略。 针对永磁同步电机可能受到信号处理、逆变器响应等因素从而引入的外部时滞效应的问题,引入 Smith 预估器与自抗扰控制相 结合,使控制系统更加精确、快速地响应内部参数变化和外部扰动。 同时,针对线性自抗扰控制器(LADRC)在有限带宽内其抗 扰性能较差的问题,设计了并行线性自抗扰控制器,在保持其带宽不变与参数易于整定的同时,有效提高其抗扰动能力。 最后, 对自抗扰控制器的稳定性进行了分析,并在此基础上进行了参数设计与扰动性能分析。 仿真与实验结果表明,所提算法相比 LADRC 在电机受到速度阶跃、负载扰动与内部参数变化时,在调整时间上分别提升了 52. 5% 、49. 5% 与 42. 4% ,从而验证了该 控制策略能有效增强永磁同步电机在多工况下抗内外扰动与速度跟踪能力。  相似文献   

6.
Active disturbance rejection control (ADRC) treats the external disturbance and internal uncertainties as a general disturbance, and uses an extended state observer (ESO) to estimate it in real-time and feeds it back in the control loop, thus can achieve good disturbance rejection performance. However, ADRC is not quite suitable for unstable delayed processes due to its inherent structure. In this paper, a two-degree-of-freedom (2DOF) control structure is proposed for unstable time- delayed systems. Set-point tracking and disturbance rejection are separated in this structure and ADRC is solely responsible for disturbance rejection. A method to tune the ADRC parameters using all the information of the system is proposed, and robustness and performance of the proposed method are analyzed. Simulation examples show that 2DOF-ADRC can achieve good tracking and disturbance rejection performance.  相似文献   

7.
Modified Smith predictor design for periodic disturbance rejection   总被引:3,自引:0,他引:3  
Zhou HQ  Wang QG  Min L 《ISA transactions》2007,46(4):493-503
In this paper, a modified Smith predictor control scheme is proposed for periodic disturbance rejection in both stable and unstable processes with time delay. Without affecting the superior setpoint response of Smith predictor control, the regulation performance under periodic disturbance can be enhanced significantly by the proposed design. Meanwhile, the asymptotical rejection for non-periodic disturbance will also be improved. Internal stability is investigated for a closed-loop control system. The effectiveness of the proposed scheme will be demonstrated by simulations as well as a test on an experimental thermal system.  相似文献   

8.
This paper aims to find a practical solution to reduce oscillation on the Smith Predictor (SP) based design with the dead time (DT) uncertainty, making it less sensitive to DT change and more effective in disturbance rejection. First, a conditional feedback mechanism is introduced in SP to reduce the amount of oscillation caused by the model inaccuracies in the DT parameter. Then, to address the oscillation caused by the phase lag in traditional PI controller and uncertain dynamics, this conditional SP is combined with active disturbance rejection control (ADRC), assisted by the knowledge of process dynamics. A practical tuning method is provided for the practicing engineers. The proposed approach is validated in extensive simulation studies with different types of plants and in frequency domain analysis. The simulation results show significant improvements in performance robustness and transient response.  相似文献   

9.
Active disturbance rejection control (ADRC) treats all the model uncertainties and all the external disturbances as a generalized disturbance. It uses an extended state observer (ESO) to estimate the generalized disturbance in real time, and compensate it using a state-feedback control law, thus can achieve good disturbance rejection performance. For linear ADRC (LADRC), the parameters can be tuned via the bandwidths of the ESO and the feedback control, thus an LADRC can be regarded as a fixed-structured controller with several parameters to tune, just like a PID controller. To help tuning the parameters of LADRC, a tuning rule is proposed in this paper, with the aim to minimize the load disturbance attenuation performance in the integral of time square error sense, under the constraint of a specified robustness measure for the first-order processes with deadtime. The tuning rule is tested for a variety of benchmark systems and the gravity drained tanks case, and the performances are compared with the well-known PID tuning methods.  相似文献   

10.
自抗扰控制器的简易实现   总被引:9,自引:0,他引:9  
文中讨论的不确定系统可表征大多数实际对象,对其实行有效控制在工程中具有重要意义。自抗扰控制器正是该领域代表性的成果。本文在ADRC的设计思路指导下,给出了两类具体的ADRC设计方法及控制器。该控制器尤其适用于电机拖动等工业应用场合。  相似文献   

11.
提出了一种应用于高精度稳定平台伺服系统的设计方法。为满足稳定平台快速隔离扰动、稳定视轴的要求,将自抗扰控制应用于平台系统的速度环,和常规PID控制的电流环一起构成ADRC-PID控制。Simulink仿真结果表明,与传统PID控制相比,采用自抗扰控制后系统响应速度快,隔离度有较大的提高。ADRC-PID控制可满足高精度光电稳定平台的性能要求,系统具有响应速度快,隔离度好,鲁棒性强,稳定性高等特点。  相似文献   

12.
An improved cascade control structure with a modified Smith predictor is proposed for controlling open-loop unstable time delay processes. The proposed structure has three controllers of which one is meant for servo response and the other two are for regulatory responses. An analytical design method is derived for the two disturbance rejection controllers by proposing the desired closed-loop complementary sensitivity functions. These two closed-loop controllers are considered in the form of proportional-integral-derivative (PID) controller cascaded with a second order lead/lag filter. The direct synthesis method is used to design the setpoint tracking controller. By virtue of the enhanced structure, the proposed control scheme decouples the servo response from the regulatory response in case of nominal systems i.e., the setpoint tracking controller and the disturbance rejection controller can be tuned independently. Internal stability of the proposed cascade structure is analyzed. Kharitonov's theorem is used for the robustness analysis. The disturbance rejection capability of the proposed scheme is superior as compared to existing methods. Examples are also included to illustrate the simplicity and usefulness of the proposed method.  相似文献   

13.
In this paper, a generalized predictor based control scheme is proposed to improve system performance of set-point tracking and disturbance rejection for non-minimum phase (NMP) systems. By using a generalized predictor to estimate the system output without time delay, a model-based extended state observer (MESO) is designed to simultaneously estimate the system state and disturbance. Accordingly, an active disturbance rejection control design is developed which consists of a state feedback control and a feedforward control for the disturbance rejection. The MESO and feedback controllers are analytically derived by specifying the desired characteristic roots of MESO and closed-loop system poles, respectively. To improve the output tracking performance, a pre-filter is designed based on a desired closed-loop transfer function for the set-point tracking. A sufficient condition guaranteeing robust stability of the closed-loop system against time-varying uncertainties is established in terms of linear matrix inequalities (LMIs). Three illustrative examples from the literature are used to demonstrate the effectiveness and merit of the proposed control scheme.  相似文献   

14.
自抗扰控制具有算法简单、性能优良等优点,控制增益b对控制效果的影响较大,高效稳定地在线辨识出该参数对提高控制效果具有重要意义。设计了一种基于模型参考自适应参数辨识的新型自抗扰控制器,核心参数自适应变化使该控制器拥有更好的性能,仿真结果表明参数b辨识准确并且该控制器相对于传统自抗扰控制具有更好的控制效果。  相似文献   

15.
为改善航空光电载荷用音圈致动快速反射镜的控制性能,提出一种降阶自抗扰控制方法。首先,对快速反射镜(Fast Steering Mirror,FSM)模型进行了分析并获取了模型参数。根据自抗扰控制理论,设计了FSM的三阶通用自抗扰控制器。将电涡流传感器的测量结果视为已知,提出降阶扩张状态观测器及其对应的自抗扰控制器设计方法。根据控制器带宽设计思想,推导了对于FSM这类二阶欠阻尼对象的控制律,并给出了加入扰动补偿量的控制律的具体实现形式。实验结果表明,降阶自抗扰控制能明显改善FSM的位置阶跃响应动态性能,能实现无超调与振荡的阶跃响应,稳态时间由11.7 ms提升至9.2 ms,同时能够降低FSM对位置斜坡输入跟踪的稳态误差,并改善其速度响应动态过程,像移补偿稳速时间由10.2 ms提升至7.8 ms,提升约24%。降阶自抗扰控制具有实现简单、运算量小的特点,能够明显提升FSM的动态性能。  相似文献   

16.
自抗扰技术在卫星姿态模拟系统中的应用   总被引:7,自引:4,他引:3  
建立了高精度卫星姿态模拟系统用于光通信地面仿真试验,针对卫星轨迹特点,设计了一种改进的自抗扰控制算法。介绍了自抗扰控制技术的特点和控制原理,提出改进的伺服算法,为自抗扰算法引入了选择性积分项。针对系统±10″动态误差要求,设计了多阈值非线性函数,并添加状态判断模块实时更改非线性函数参数。同时,给出了算法主要参数的整定原则。然后,基于控制器开放伺服功能,给出了自抗扰控制的实现方法和计算流程。实验结果表明:系统具有良好的连续加减速能力,跟踪斜坡信号的动态误差为±6″;经对比,在跟踪卫星姿态轨迹时,自抗扰控制的抗干扰能力优于PID控制,跟随误差达到±7″,满足高精度姿态仿真要求。  相似文献   

17.
This paper presents a parameters tuning method based on the genetic algorithm (GA) for an active disturbance rejection control (ADRC) of a three-axis inertially stabilized platform (ISP) with imaging sensors. To improve the stabilization accuracy and robustness of an aerial ISP under multi-source disturbances environment, an ADRC control scheme is first proposed. Then, to accurately identify and tune the parameters in the ADRC controller, a GA-based parameters tuning method is proposed. In this way, the performance of the ADRC is superior to the empirical method. To validate the proposed method, the simulations and experiments are carried out. The results show that the proposed ADRC with GA-based parameters tuning method has significant disturbance rejection ability which can improve the stabilization accuracy obviously. Compared with the ADRC with empirically tuning method, the stabilization error (RMS) under movable base is decreased up to 50.09%.  相似文献   

18.
For the uncertain system whose order, relative degree and parameters are unknown in the control design, new research is still in need on the parameter tuning and close-loop stability. During the last 10 years, much progress is made in the application and theory research of the active disturbance rejection control (ADRC) for the uncertain system. In this study, the necessary and sufficient conditions are established for building the ADRC for the minimum-phase system and the open-loop stable system when the plant parameters, orders and relative degrees are unknown, the corresponding ideal dynamics are analyzed, and the theoretical results are verified by the simulations. Considering the wide application and the long history of the PID/PI controller, a method is given to design ADRC quickly based on the existing (generalized or conventional) PID/PI controller. A plenty of simulations are made to illustrate this PID/PI-based design method and the corresponding close-loop performances. The simulation examples include the minimum/nonminimum-phase plants, the stable/integrating plants, the high/low-order plant, and the plants with time delays. Such plants are from a wider scope than the theoretical result, and representative of many kinds of the industrial processes. That leads to a new way to simplify the ADRC design via absorbing the engineering experience in designing the PID/PI controller.  相似文献   

19.
This paper presents a frequency identification and disturbance rejection scheme for open loop stable time delay systems with disturbance containing a constant signal and a single sinusoidal signal. Astrom’s modified Smith predictor is employed to maintain good setpoint tracking performance. Disturbance rejection controller is designed via internal model control principle and functions as a finite dimensional repetitive controller. Extended Kalman filter is designed to track the frequency of unknown periodic disturbance. The simulation results demonstrate the successful performance of the proposed disturbance rejection method for controlling a linear system with time delays, subjected to both step and sinusoidal disturbances.  相似文献   

20.
Linear active disturbance rejection control (ADRC) is known for its simplicity and its performance in disturbance attenuation. Currently, tuning of linear ADRC (LADRC) is via the bandwidth idea. In this paper, tuning of LADRC with known plant information is investigated. It is shown that there are limitations using only two bandwidths to tune the LADRC controllers. To take advantage of the known plant information, a generalized ADRC (GADRC) method is proposed. Then the intrinsic link between the conventional LADRC and GADRC is analyzed. It is shown that the available plant model information used in GADRC can be utilized in the designs of the observer gain and the controller gain of the conventional LADRC. Simulation results demonstrate that with known plant information incorporated, the performance of a conventional LADRC can indeed be improved, especially for unstable, time-delayed and non-minimum phase processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号