首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the performance of a research prototype of a new multiphase flow instrument to non-invasively measure the phase flow rates, with the capability to rapidly image the flow distributions of two- and three-phase (gas and/or oil in water) flows. The research prototype is based on the novel concepts of combining vector Electrical Impedance Tomography (EIT) sensor (for measuring dispersed-phase velocity and fraction) with an electromagnetic flow metre (EMF, for measuring continuous-phase velocity with the EIT input) and a gradiomanometer flow-mixture density metre (FDM), in addition to on-line water conductivity, temperature and absolute pressure measurements. EIT–EMF–FDM data fusion embedded in the research prototype, including online calibration/compensation of conductivity change due to the change of fluids' temperature or ionic concentration, enables the determination of mean concentration, mean velocity and hence the mean flow rate of each individual phase based on the measurement of dispersed-phase distributions and velocity profiles. Results from first flow-loop experiments conducted at Schlumberger Gould Research (SGR) will be described. The performance of the research prototype in flow-rate measurements are evaluated by comparison with the flow-loop references. The results indicate that optimum performance of the research prototype for three-phase flows is confined within the measuring envelope 45–100% Water-in-Liquid Ratio (WLR) and 0–45% Gas Volume Fraction (GVF). Within the scope of this joint research project funded by the UK Engineering & Physical Sciences Research Council (EPSRC), only vertical flows with a conductive continuous liquid phase will be addressed.  相似文献   

2.
This paper describes an electromagnetic flow meter for velocity profile measurement in single phase and multiphase flows with non-uniform axial velocity profiles. A Helmholtz coil is used to produce a near-uniform magnetic field orthogonal to both the flow direction and the plane of an electrode array mounted on the internal surface of a non-conducting pipe wall. Induced voltages acquired from the electrode array are related to the flow velocity distribution via variables known as ‘weight values’ which are calculated using finite element software. Matrix inversion is used to calculate the velocity distribution in the flow cross section from the induced voltages measured at the electrode array. This paper presents simulations and experimental results including, firstly the effects of the velocity profile on the electrical potential distribution, secondly the induced voltage distribution at the electrode pair locations, and thirdly the reconstructed velocity profile calculated using the weight values and the matrix inversion method mentioned above. The flow pipe cross-section is divided into a number of pixels and, in the simulations, the mean flow velocity in each of the pixels in single phase flow is calculated from the measured induced voltages. Reference velocity profiles that have been investigated in the simulations include a uniform velocity profile and a linear velocity profile. The results show good agreement between the reconstructed and reference velocity profiles. Experimental results are also presented for the reconstructed velocity profile of the continuous water phase in an inclined solids-in-water multiphase flow for which the axial water velocity distribution is highly non-uniform. The results presented in this paper are most relevant to flows in which variations in the axial flow velocity occur principally in a single direction.  相似文献   

3.
This paper investigates the relationship between the induced electric potential and the velocity distribution of the conductive continuous phase in two-phase flows in pipes to which an electromagnetic field is applied, with a view to measuring the continuous phase velocity profile. In order to investigate the characteristics of an electromagnetic flow meter in multiphase flow, an alternating current electromagnetic flow meter was modelled using FEMLAB software. Using the model, electrodes could be placed at any position on the insulating internal surface of the flow meter to satisfy the requirement of measuring the induced potentials at specific locations at the boundary of the flow. The induced electric potential or potential differences from the electrodes were analysed for various simulated flow conditions. The numerical simulation results suggest that electromagnetic flow metering may be an effective novel method for measuring the axial velocity profile of the conducting continuous phase. Furthermore, when combined with the local volume fraction distribution of the continuous phase (obtained, for example, using Electrical Resistance Tomography, also known as ERT), it is expected that the measured continuous phase velocity profile would enable the volumetric flow rate of the continuous phase to be obtained.  相似文献   

4.
Electrical resistance tomography (ERT) can be used to obtain the conductivity distribution or the phase distribution of gas/liquid flows (e.g. slug flow). Using proper parameter models and flow regime identification models, the measurement of phase size, void fraction, and pattern recognition can be realized. Electromagnetic flowmeters have been used to measure conductive single-phase liquid flows. However, neither ERT nor electromagnetic flowmeters (EMF) can provide accurate measurement of gas/liquid two-phase flows. This paper presents an approach to fuse the information from ERT and an electromagnetic flowmeter. A model for the measurement signal from the electromagnetic flowmeter has been developed based on the flow pattern and the phase distributions, which are obtained from the reconstructed images of ERT, aiming to reduce the measurement error of the electromagnetic flowmeter and enhance the measurement accuracy. Through the simulation research of virtual current density distribution, the feasibility of fusion of electromagnetic flowmeter and ERT to measure gas/liquid two-phase vertical slug flow is verified. By theoretical analysis, the relationship between the output of electromagnetic flowmeter and flow parameters is established. The electrical potential difference of the electromagnetic flowmeter, average velocity, volume flow rate and gas void fraction between the bubble size and location are also investigated. The fusion approach can be used to measure vertical slug flows.  相似文献   

5.
Two-dimensional ultrasonic speckle correlation velocimetry (USV) is a new technique that allows imaging of moving scattering media, at a high frame-rate. In this paper we apply the technique to determine two-dimensional particle velocity profiles of multiphase flows. Experiments are realized with suspensions of Sonazoid (medical contrast agent) and Magnetite (Fe3O4) in water. All measurements are performed in a vertical pipe with the flow moving downwards. The two-dimensional particle velocity profiles are then compared with a reference liquid volume flow velocity. As expected from theory, the heavier Magnetite particles have slightly higher velocity than the liquid, whereas the contrast agent simply follows the liquid motion.The proposed technique can be used in combination with other techniques to measure the mass flow of the solid phase, in solid/liquid multiphase flow. This is generally more interesting than measuring the bulk mass or volume flow.  相似文献   

6.
The ultrafast electron beam X-ray tomography scanner ROFEX is used for the investigation of multiphase flows. Its functional principle allows us to obtain sequences of cross-sectional flow images, which shows local attenuation properties of the flow. Hence, the X-ray CT images mainly reveal the shape and interfaces of flow constituents, such as gas, liquid and solids via their X-ray contrast. It is, however, more difficult to obtain velocity information from multiphase flows. In this article we discuss different methods to extract information on the velocities of particles or interfaces as well as for continuous phase. For disperse phase velocity measurement, e.g. in gas–liquid or gas–solids flows, we employ cross-correlation based techniques using two imaging planes. Apart from the standard cross-correlation technique we developed a method and algorithm, which is capable to identify identical bubbles in the two planes giving us a unique Lagrangian particle-related velocity information. Eventually we give an example of velocity measurement in the continuous liquid phase using an X-ray contrast agent.  相似文献   

7.
A new technique was developed for measuring the profile and mean velocity of elongated bubbles in horizontal air–water slug flows. It is based on the capacitance between two thin electrodes mounted on the external surface of a dielectric pipe, and has advantages in relation to the traditional parallel wire technique, since it is not intrusive, the presence of impurities in the liquid phase has no influence on the probe response, and it is applicable to very low electrical conductivity liquids, such as oils and deionized water. Tests were performed in an experimental facility with a 5 m long, 34 mm internal diameter Plexiglas pipeline. The elongated bubble mean velocity was determined by using a cross correlation technique applied to the signals coming from two identical capacitance probes, mounted 50 mm distant from each other. The results were compared with an empirical correlation from the literature. Discordance was observed only for flows near the flow pattern transition regions in the flow pattern map.  相似文献   

8.
A method to improve accuracy of surface compliance determination by atomic force microscopy is presented, based on using calibrated cantilevers as the reference samples. During each work session, a 1-D compliance map of a reference cantilever is calculated from force–indentation curves along its axis, by the standard ‘indentation mode’. An independent measurement of local compliance on the reference cantilever is obtained by 2-D imaging in constant deflection and using analytical equations based on its known geometry and material properties, called ‘imaging mode’. A re-mapping of the apparent (‘indentation mode’) to the true (‘imaging mode’) compliance is thus obtained, which is applied on ‘indentation mode’ measurements of an unknown sample. This method demonstrates correction in the right direction for a polystyrene plate and a Teflon foil reference samples. The method is then applied on an unknown sample of flat agarose gel patterned with spots of polylysine protein.  相似文献   

9.
On-line mass flow measurement of particulate solids in pneumatic conveying pipeline is a technically challenging area, where mass flow measurement presents a range of problems. These problems are not normally relevant to a single phase flow, but are always involved in gas–solids two-phase flows, like inhomogeneous distribution of solids over the pipe cross section, irregular velocity profiles, variations in particle size, moisture content, and deposition of fine particles on the inner wall of the pipeline. These variables may affect the response of a solids flow meter in ill-defined ways. All of these make the design and the calibration of solids’ mass flowmeter more difficult. Based on a review of non-invasive mass flow measurements of particulate solids, this paper summarizes and highlights several key issues, which often rely on structures of sensors or measurement methods, in indirect mass flow metering of pneumatically conveyed solids. They are: (i) spatial filtering effect; (ii) averaging effect; (iii) measurement resolution and sensitivity of array structures in tomography sensors.  相似文献   

10.
An inductive flow sensor with spot-shaped electrodes (IFS-SE) is sensitive to the shape of the flow profile and is restricted to be used to measure the flow rate of axisymmetric single-phase flows in a circular pipe. In many cases of application, it is not possible to provide a fully developed flow profile. Therefore, the inductive flow sensor has to cope with flow profiles that are not fully developed. To improve the accuracy, an inductive flow sensor with a pair of arc-shaped electrodes flush-mounted on the internal surface of an insulating section of a pipe is proposed in this article to investigate the characteristics of vertical gas-water two-phase flows. The effect of the flow profile on the inductive flow sensor is analyzed. A key contribution of the present work is to estimate the relationship between the induced voltage and the velocity of the conductive phase in two-phase flows. The estimation is achieved by the analytical calculation of magnetic-inductive equations through the method of variables separation. The analytical solution is compared with the results from an ideal model and from numerical simulation. Experiments are conducted to calibrate the inductive flow sensor with arc-shaped electrodes (IFS-AE). It is noted that the proposed IFS-AE can be adopted to obtain the velocity of the conductive phase in two-phase flows by measuring the voltage induced on the arc-shaped electrodes.  相似文献   

11.
Two–phase flows appear in many industrial and biomedical applications. One of the most vital biomedical applications of two–phase flows is in hemodialysis machines due to air embolism and heparin injection. Since these flows have a very complex and intermittent nature, studying their dynamics is a very challenging and fundamental problem. The purpose of this article is to present an experimental study on the dynamics of two–phase peristaltic slug flows. The measurement strategy is based on the image processing technology. The characteristic parameters of the two–phase pulsatile slug flows, including the slug length, as well as the translational velocity and frequency of the slug motion, are measured, and the effect of the liquid flow rate and liquid superficial velocity is investigated. The results show that the average and maximum slug velocities, and also the dominant amplitude of the slug velocity increase with the flow rate and liquid superficial velocity, while it is not possible to clearly predict a correlation between the liquid superficial velocity and the slug length. The measurement strategy presented in this article can be used in the control and alarm systems of smart dialysis machines.  相似文献   

12.
This paper presents a novel method for automatic detection of apnea and hypopnea events as well as mean duration of events from the recording of single channel oronasal airflow signal, moreover the automated algorithm has been implemented with PC based low cost Data Acquisition System (DAS). The method divides the respiration signal into overlapping segments of typical 8 s duration and then categorize the segments with the help of ensemble binary Support Vector Machine (SVM) classifiers, according to the origin of the segments, i.e. ‘N’ if the segment originates from normal respiration signal during sleep, ‘A’ if it originates from apnea and ‘H’ for hypopnea event related breathing signal. Finally, it uses a heuristically derived rule based system to identify the apnea or hypopnea events by combining the time sequenced decisions of the classifiers. Automatic identification of events helps to provide the direct estimation of Apnea Hypopnea Index (AHI) and thus severity. The overall correlation coefficients between the automatic model predicted indexes and the PSG based manual indexes were 0.970, 0.986 and 0.982 for HI, AI, and AHI respectively.  相似文献   

13.
This paper describes the design and implementation of a two-phase flow meter which can be used in solids-in-water two phase pipe flows to measure the in-situ volume fraction distributions of both phases, the velocity profiles of both phases and the volumetric flow rates for both phases. The system contains an Impedance Cross Correlation (ICC) device which is used in conjunction with an Electromagnetic Velocity Profiler (EVP). Experimental results were obtained for the water and solids velocity and volume fraction profiles in upward inclined flow at 30° to the vertical, in which highly non-uniform velocity and volume fraction profiles occur.  相似文献   

14.
Accurate measurement of multiphase flows, including gas/solids, gas/liquid, and liquid/liquid flows, is still challenging. In principle, electrical capacitance tomography (ECT) can be used to measure the concentration of solids in a gas/solids flow and the liquid (e.g., oil) fraction in a gas/liquid flow, if the liquid is non-conductive. Electrical resistance tomography (ERT) can be used to measure a gas/liquid flow, if the liquid is conductive. It has been attempted to use a dual-modality ECT/ERT system to measure both the concentration profile and the velocity profile by pixel-based cross correlation. However, this approach is not realistic because of the dynamic characteristics and the complexity of multiphase flows and the difficulties in determining the velocities by cross correlation. In this paper, the issues with dual modality ECT/ERT and the difficulties with pixel-based cross correlation will be discussed. A new adaptive multi-modality (ECT, ERT and electro-dynamic) sensor, which can be used to measure a gas/solids or gas/liquid flow, will be described. Especially, some details of the electrodynamic sensor of multi-modality system such as sensing electrodes optimum design, electrostatic charge amplifier, and signal processing will be discussed. Initial experimental results will be given.  相似文献   

15.
Gas–solids flows in the risers of circulating fluidised beds (CFBs) and cyclones exhibit complex physical behaviour, such as local backflow and recirculation. The difficulties in accurate measurement of gas–solids flows stem from various flow regimes, which exist in multi-phase flows in pipelines and vessels. It is necessary to investigate the solids’ fraction profile, flow regime identification, image reconstruction, flow acceleration and flow velocity. Electrical capacitance tomography (ECT) is regarded to be a successful technology for imaging industrial processes containing dielectric materials. ECT would help understanding of gas–particle interaction, particle–boundary interaction and the influence of gas on the solids’ flow turbulence.The first part of this paper covers some new developments in ECT, i.e., algorithms for 3D image presentation and on-line iterative image reconstruction. The second part presents a novel non-intrusive technique for measuring axial and angular velocities. Theoretical and experimental studies, carried out using cross-correlation techniques in a cyclone separator dipleg, confirm the feasibility of on-line velocity measurement. Experimental results from various gas–solids flow facilities, CFB and cyclone, are presented.  相似文献   

16.
Mathematical models and numerical methods offer a flexible tool to investigate flow disturbance effects on flowmeters of different types. In this paper a simple neural network based approach has been used to study the velocity profile dependence of ultrasonic flowmeters. Neural networks have been used in two ways: to interpolate the velocity profiles in the points needed for the modelling of ultrasonic flow measurement, and to compute the weights for different paths of multipath ultrasonic flowmeters. In the former case two types of neural networks, multilayer perceptron networks and radial basis function networks, have been investigated. In the latter case, a single layer neural network with linear neurons is first trained with known velocity profiles, and the weights determined by the network have then been used in the computation of the errors in other piping configurations. The results have been compared with the errors computed with the weights for different paths given in Pannel CN, Evans WAB, Jackson DA. A new integration technique for flowmeters with chordal paths, Flow Measurement and Instrumentation 1990;1:216–224.  相似文献   

17.
Oil-in-water two-phase flows are often encountered in the upstream petroleum industry. The measurement of phase flow rates is of particular importance for managing oil production and water disposal and/or water reinjection. The complexity of oil-in-water flow structures creates a challenge to flow measurement. This paper proposes a new method of two-phase flow metering, which is based on the use of dual-modality system and multidimensional data fusion. The Electrical Resistance Tomography system (ERT) is used in combination with a commercial off-the-shelf Electromagnetic Flow meter (EMF) to measure the volumetric flow rate of each constituent phase. The water flow rate is determined from the EMF with an input of the mean oil-fraction measured by the ERT. The dispersed oil-phase flow rate is determined from the mean oil-fraction and the mean oil velocity measured by the ERT cross-correlation velocity profiling. Experiments were carried out on a vertical upward oil-in-water pipe flow, 50 mm inner-diameter test section, at different total liquid flow rates covering the range of 8–16 m3/hr. The oil and water flow rate measurements obtained from the ERT and the EMF are compared to their respective references. The accuracy of these measurements is discussed and the capability of the measurement system is assessed.  相似文献   

18.
In the continuous casting process, an adequate control of liquid steel flow through the submerged entry nozzle is essential for maintaining steel cleanliness and ensuring good surface quality in downstream processing. Monitoring the flow in the nozzle presents a challenge for the instrumentation system because of the high temperature environment and the limited access to the nozzle in between the tundish and the mould.In this paper, the distribution of a two-phase liquid metal/gas flow is studied by using a liquid metal laboratory model of an industrial steel caster and an inductive sensor array. The experiments were performed with the liquid eutectic alloy GaInSn as an analogue for liquid steel, which has similar conductive properties as molten steel and allows the measurements at room temperature. A scaled (approx. 1:10) experimental rig consisting of a tundish, a stopper rod, a nozzle and a mould was used. Argon gas was injected through the centre of the stopper rod and the behavior of two-phase GaInSn/argon flows was studied.The electromagnetic system used in the experiments to monitor the behavior of two-phase GaInSn/argon flows consists of an array of 8 equally spaced inductive coils arranged around the object, a data acquisition system and a host computer. The present system operates at 10 kHz and has a capture rate of 10 frames per second.The results show clearly that the injection of the argon gas is distinguishable from the single phase flow by observing the appearance of oscillation patterns. These oscillations become more dominant with the increase of the argon flow. In some cases two main oscillation patterns were present in the raw signals. In general, the signals and the reconstructed void fractions in the nozzles are highly correlated with the observed oscillations of the level height in the mould and the pressure in the nozzle.  相似文献   

19.
This communication presents the approaches set up for processing spinner flowmeter well logs in vertical wells with a single fluid phase, which is the most widely used in assessing wells productivity. These focus on improving the pipe hydraulics relationships so that the different fluid inputs throughout the well can be quantified. Since vertical flow inside wells varies with depth between laminar flows (very low Reynolds number, i.e. Re < 103) and turbulent (Re > 4·103) the aim has been to reduce the uncertainty in the transition interval. Starting from bibliographical data and/or well-known formulas for laminar and for turbulent flow, several continuous relationships have been developed for any regime: 1) an expression for the radial distribution of velocity inside the pipeline (velocity profile) was developed. 2) A relationship between the average velocity and the velocity at the axis (velocity factor) was created. 3) A third equation was generated to obtain the friction factor in smooth pipes (and starting from this, a new explicit equation for rough pipes). The purpose has been to have a set of empirical expressions of easy and continuous application for any regime, as an alternative to the use of computer simulations.  相似文献   

20.
This paper describes the design and experimental evaluation of a novel radiometric instrumentation system that has been recently developed for the measurement of velocity, concentration and mass flow rate of solids in a pneumatic pipeline. The system employs a novel multi-beam, micro-sensing field interrogating the entire pipe cross-section to accommodate the irregularity of the solids velocity profile and inhomogeneity of the solids distribution within the pipeline. Experimental results obtained on a pneumatic conveyer circulating ilmenite powder demonstrate that the system is capable of detecting various velocity profiles and solids distributions across the pipe section and providing an absolute mass flow rate of solids within a good agreement to the reference reading from load cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号