首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
形状记忆合金的动态加热控制方法研究   总被引:1,自引:0,他引:1  
由于环境温度、热对流和热辐射条件以及输入的加热电流强度的不同,致使嵌在复合材料中的形状记忆合金的温度难以确定。为了在最短时间促成形状记忆合金的相变并防止因过热而烧毁复合材料或形状记忆合金驱动元件,提出了一种基于电阻变化率反馈的动态自传感加热方法,它可以实时监测相变的起始点和结束点,有效地防止过热。试验结果与理论分析吻合良好。  相似文献   

2.
Fundamental metrology is closely linked to the development of science and needs good facilities to achieve low measurement uncertainty in demanding experiments. The laboratories must have good temperature stability, low vibration level, good electromagnetic shielding, clean room air, and humidity control. This paper outlines specification and design principles of a compact laboratory building that brings most of the activities of MIKES under one roof, thus attaining the performance of the most demanding laboratories. The most demanding specifications of temperature and vibration were set for the length and mass laboratories. The tightest room temperature specification was (20 ± 0.05) °C. The vibration level was specified at the tightest level to 1 μm/s at frequencies of 0.1-5 Hz. Electromagnetic shielding was specified at best to 100 dB for plane waves up to 20 GHz. Relative humidity was specified (48 ± 2)% at 20 °C. The specifications were clearly achieved and state of the art metrology laboratories implemented.  相似文献   

3.
形状记忆合金智能复合材料自修复中传感与控制方法研究   总被引:3,自引:0,他引:3  
对于埋入形状记忆合金丝的智能材料,提出了通过监测电阻的变化来传感外应力引起的应变、判断基材的损伤情况,同时使用参考形状记忆合金丝补偿温度引起的应变,消除传感误差。在结构自修复过程中,由于环境温度、热对流和热辐射条件以及加热电流强度不同等因素致使形状记忆合金的温度状态难以确定,为了尽快让裂缝闭合、在最短时间促成形状记忆合金的相变并防止因过热而烧毁基材或形状记忆合金丝,提出了一种基于电阻变化率反馈的动态自传感加热方法,可以实时监测相变的起始点和结束点,有效地防止过热。试验结果与理论分析吻合良好。  相似文献   

4.
Conventional AMB(active magnetic bearings) systems consist of electromagnetic coils, position sensors, power amplifiers and a feedback controller. This hardware configuration can lead to a structural complexity, problems of space limitations for the installation, and position control difficulties due to the non-collocation of actuators and sensors. In this paper, a self-sensing mechanism is proposed to resolve such limitations of the general AMB system. The proposed self-sensing scheme uses a phase difference of the injected current of two opposite electromagnetic actuators while an object is levitating between the actuators. The relationship between the phase difference of injected currents and the position of a levitated object was theoretically derived and linearized. In order to realize the proposed self-sensing scheme, a signal processing algorithm was developed. The frequency response of the estimator was measured to verify the performance of the proposed self-sensing scheme. In addition, a magnetic levitation and a disturbance rejection response were experimentally obtained to verify the feasibility of the proposed self-sensing mechanism. Experimental results showed that the developed self-sensing technique has similar performance as a practical gap sensor.  相似文献   

5.
This paper presents the control system design and tracking performance for a large range single-axis nanopositioning system that is based on a moving magnet actuator and a flexure bearing. While the physical system is designed to be free of friction and backlash, the nonlinearities in the electromagnetic actuator as well as the harmonic distortion in the drive amplifier degrade the tracking performance for dynamic commands. It is shown that linear feedback and feedforward proves to be inadequate to overcome these nonlinearities. This is due to the low open-loop bandwidth of the physical system, which limits the achievable closed-loop bandwidth given actuator saturation concerns. For periodic commands, like those used in scanning applications, the component of the tracking error due to the system nonlinearities exhibits a deterministic pattern and repeats every period. Therefore, a phase lead type iterative learning controller (ILC) is designed and implemented in conjunction with linear feedback and feedforward to reduce this periodic tracking error by more than two orders of magnitude. Experimental results demonstrate the effectiveness of ILC in achieving 10 nm RMS tracking error over 8 mm motion range in response to a 2 Hz band-limited triangular command. This corresponds to a dynamic range of more than 105 for speeds up to 32 mm/s, one of the highest reported in the literature so far, for a cost-effective desktop-sized single-axis motion system.  相似文献   

6.
A.K. Prasada Rao  B.S. Murty 《Wear》2006,261(2):133-139
Present article reports the microstructure and wear behavior of grain refined and modified Al-7Si-0.3Mg (LM25) alloy. Combined grain refinement and modification is achieved by inoculating LM25 melt with various inoculation levels (0.2, 0.5 and 1.0 wt%) of a novel Al base master alloy containing Ti, C and Sr (synthesized in the authors’ laboratory) at 720 °C. The wear resistance of LM25 alloy improves with the addition of this master alloy up to 0.5 wt%. It is observed that α-Al cell size and morphology of the eutectic silicon of LM25 alloy have significant effect on the wear resistance of the alloy.  相似文献   

7.
In this study, the performance of ceramic materials that were subjected to solid particle erosion was analyzed. This research was performed to characterize the materials in relation to the wear process. The materials could be used in the construction of devices and machine components that are commonly exposed to environments where volatile, abrasive particles typically cause a high rate of wear. The types of composites used in this study could have useful applications in mechanical components, automotive coatings, etc. These materials are usually obtained from solid residuals and volcanic ashes, in which clay and epoxy resin were used as binders.The erosion testing was performed in accordance with the ASTM G76-95 standard. The samples had a rectangular shape, and their dimensions were 50×25 mm2 and 10 mm in thickness. The abrasive particles used were angular silicon carbide (SiC) with a particle size of 420-450 μm. The tests were performed using three different incident angles (30°, 45° and 90°) with a particle velocity of 24±2 m/s. The abrasive flow rate was 70 g/min. The particle velocity and the abrasive flow rate were low in all the tests to reduce the interaction between the incident particles and the rebounding particles in the system. Additionally, the total time of each test was 10 min, and the specimens were removed every 2 min to determine the amount of mass lost. The test specimens were located a distance of 7 mm from the shot blast. The surface of the specimens was examined with a scanning electron microscope (SEM), which characterized the erosive wear damage.The results indicated that all of the ceramic materials reached their maximum erosion rate at an incident angle of 90°. The erosion rate was significantly decreased when the angle of incidence was 30°. Additionally, the ceramics that consisted of volcanic ashes and sand mixed with epoxy resin gave a better erosion resistance compared with the materials that were combined with clay. It was assumed that the combination that was mixed with epoxy resin produced a more compact structure in the specimens, which resulted in a less severe attack of the particles that were acting on the surface of the material. The sand and the volcanic ashes that were mixed with clay, which had the poorest performance in the tests, exhibited similar behavior.It was also observed that the damaged area was extended in all of the cases that used an incident angle of 45°, whereas the depth of the wear scars was higher when an incident angle of 90° (normal incidence) was used. The wear scars were characterized by an elliptical shape at 30° and 45°, which is a characteristic feature when the specimens are impacted at low-impact angles (α≤45°), whereas a circular shape was observed at 90°.  相似文献   

8.
A.F. Yetim  Y. Vangolu  A. Celik 《Wear》2009,267(12):2179-1962
Different kinds of diffusion processes, plasma nitriding, oxidizing and oxynitriding as of a combination of other two, have been applied to Ti6Al4V alloy to evaluate the effect of treatment times (1 and 4 h) and temperatures (650 and 750 °C) on wear properties of the alloy. It was observed that a hard modified layer was produced on the surface of the alloy after each diffusion process. While TiN and Ti2N phases form in the modified layer with plasma nitriding, mainly TiO2 phase forms after plasma oxidizing treatment. The wear tests performed at different normal loads showed that all treated samples, except for nitrided and oxidized at 650 °C for 1 h, exhibited higher wear resistance than untreated Ti6Al4V alloy. The plasma nitrided samples showed adhesive wear. On the other hand, while the plasma oxidizing samples displayed adhesive wear at lower loads, wear mechanism changed to abrasive wear as the load increased because the oxide film which covers the surface was broken during the sliding at higher loads.  相似文献   

9.
In the management of radioactive wastes, cementitious grouts can be used to from engineered barriers for sealing radioactive waste packages in underground repositories. In the current work, temporal and spatial electrical conductance and temperature measurements are used to study the short-term hydration and drying characteristics of a cement-based backfill grout under simulated repository environments. To undertake these measurements, specimens were contained within a test cell, with electrodes and thermistors positioned at discrete distances from the exposed surface of the specimens. The specimens were exposed to ambient temperatures of 25 ± 2 °C and 55 ± 2 °C at relative humidities of 55 ± 5% and 85 ± 5%. Measurements were taken within the surface 80 mm from initial mixing, through setting up to 7-days hydration. A parallel series of tests was also undertaken on sealed-samples, protected from drying effects, to allow comparison with exposed samples. By monitoring the changes in conductance the influence of ambient environment on setting, hardening and drying can be studied. Results are also presented from gravimetric tests which showed that Stage II drying (decreasing drying rate) dominated over the test period.  相似文献   

10.
王贞艳  贾高欣 《光学精密工程》2018,26(10):2484-2492
压电陶瓷作动器被广泛应用于精密定位和控制中,但其本身存在的非对称迟滞非线性特性,严重影响了系统的定位和控制精度。针对这一问题,提出了一种基于广义Bouc-Wen模型的非对称迟滞建模方法,并利用差分进化算法辨识模型参数;基于所建的广义Bouc-Wen模型构建了其具有解析形式的迟滞逆模型,并设计了内模控制方案实现对压电陶瓷作动器的精密跟踪控制;最后在压电陶瓷作动器实验平台,对所提出的建模和控制方案进行了实验验证。对压电陶瓷作动器的建模结果表明,系统建模误差均小于0.051 0,比经典Bouc-Wen模型的建模误差降低约21%~46%;对100 Hz内幅值为20μm的期望位移信号的控制实验结果表明,所提出的控制方法具有良好的实时跟踪性能和跟踪控制精度。对100 Hz期望信号的跟踪控制均方根误差为0.491 6μm,相对误差为0.040 2μm,可以很好地满足实际工程需要。  相似文献   

11.
Chromium nitride-based coatings are often used in application at high temperature. They possess high wear and oxidation resistance; however, the friction coefficient is typically very high. Therefore, we doped CrN coatings by carbon with the aim to improve tribological properties at elevated temperature, particularly to lower the friction. CrCN coatings were prepared by cathode arc evaporation technology using constant N2 flow and variable C2H2 flow. The coatings with a thickness of 3-4 μm were deposited on hardened steel substrates and high-temperature resistant alloy. The carbon content varied from 0 at.% (i.e. CrN) up to 31 at.%. The standard coating characterization included the nano-hardness, adhesion, chemical composition and structure (including hot X-ray diffraction). Wear testing was done using a high temperature tribometer (pin-on-disc); the maximum testing temperature was 700 °C. The coatings with carbon content 12-31 at.% showed almost identical tribological behaviour up to 700 °C.  相似文献   

12.
A portable methane gas monitor based on an infrared spectrum absorption principle has been developed using a dual-channel and dual-wavelength pyroelectric infrared detector, active filters around the overtone absorption lines of methane at 3.31 μm, reference filters around the non-absorption lines of methane at 3.93 μm, mid-IR LEDs, a miniature gold-filled cell structure, temperature sensors for gas concentration calibration and compensation, an electrical modulation source, and a highly integrated intelligent controller. A detailed investigation has been carried out to design a low-cost portable IR optical sensor for methane detection that can operate in harsh environments with temperature variations between −10 °C and 40 °C. The infrared detection optics principle used in developing this system is mainly analyzed. A prototype based on this design showed an accuracy of ±0.05%, which meets the technology requirements of lower-power consumption, reduced volume, and wide measurement range.  相似文献   

13.
In this paper, the effect of ground vibration on hardness measurement, Rockwell scale C hardness, Vickers scale HV1 hardness and Leeb hardness is studied. The hardness machines were placed on the vibration table. The vibration signal is single frequency sinusoidal wave, which frequency and amplitude of vibration can be controlled. The hardness value at free from vibration state is used as a reference to calculate the error of each hardness measurement at certain frequency and amplitude. Two Rockwell hardness testing machines are used to measure hardness blocks: 20, 40, and 60 HRC. Both machines give the same tendency. Significant negative errors occur around frequency 5–15 Hz. Moreover, ground vibration has more impact on the soft range of hardness than hard range. The result from this paper can be used as guideline for laboratory to control environmental vibration amplitude to be less than 0.01 m/s2 for frequency (10 ± 5) Hz and 0.05 m/s2 for other in Rockwell scale C hardness measurement. Effect of vibration on Vickers and Leeb hardness measurement is preliminarily studied. Results on 200 HV1 and 900 HV1 measurement show that vibration creates peak of error at frequency 20 Hz of amplitude more than 0.01 m/s2 and the effect can be observable at all frequency for amplitude of 0.04 m/s2. Different from Rockwell and Vickers, Leeb hardness measurement is not influenced by vibration in this experiment.  相似文献   

14.
The accuracy and precision of thin-film interfacial mixing as measured with atom probe tomography (APT) are assessed by considering experimental and simulated field-evaporation of a Co/Cu/Co multilayer structure. Reconstructions were performed using constant shank angle and Z-scale reordering algorithms. Reconstruction of simulated data (zero intermixing) results in a 10-90% intermixing width of ∼0.2 nm while experiential intermixing (measured from multiple runs) was 0.47±0.19 and 0.49±0.10 nm for Co-on-Cu and Cu-on-Co interfaces, respectively. The experimental data were collected in analysis orientations both parallel and anti-parallel to film growth direction and the impact of this on the interfacial mixing measurements is discussed. It is proposed that the resolution of such APT measurements is limited by the combination of specimen shape and reconstruction algorithms rather than by an inherent instrumentation limit.  相似文献   

15.
This paper proposes a new method for automatic tuning of the Smith predictor controller based on a Repetitive Control (RC) approach. The method requires the input of a periodic reference signal which can be derived from a relay feedback experiment. A modified repetitive control scheme repetitively changes the control signal to achieve tracking error convergence. Once a satisfactory performance is achieved through the learning control, the parameters of the Smith predictor controller can be computed from the signals using a nonlinear least squares algorithm. The same relay feedback experiment can provide an initial parameter vector for an efficient implementation of the parameter estimation. Simulations and experimental results will be furnished to illustrate the effectiveness of the proposed tuning method.  相似文献   

16.
High temperature abrasive wear performance of Inconel 617, Stellite 6 alloys and X32CrMoV33 hot work tool steel was investigated. The wear resistance of the latter is degraded at 750 °C due to its inferior oxidation resistance. Extensive oxidation co-occuring with abrasive wear at 750 °C leads to substantial material loss due to the lack of a protective oxide scale, sufficiently ductile to sustain the abrasion without extensive spalling. The wear resistance of the Inconel 617 and Stellite 6 alloys, on the other hand, improves at 750 °C owing to protective oxides that sustain the abrasion without spalling.  相似文献   

17.
Dry sliding wear tests at 25-400 °C were performed for 45, 4Cr5MoSiV1 and 3Cr13 steels; the relations between oxidative wear and Cr content of steels were explored. The low and medium-Cr steels had a substantially lower wear rate and increasing tendency than the high-Cr steel at 25-200 °C, but the contrary case occurred at 400 °C. With an increase of ambient temperature, the wear rate of the low and medium-Cr steels first decreased, then increased and reached the lowest value at 200 °C, while the wear rate of the high-Cr steel decreased monotonously with the lowest value at 400 °C. At 25 °C, trace tribo-oxides reduced wear to some extent in adhesive-dominated wear for the low and medium-Cr steels. At 200 °C, a small amount of tribo-oxides formed and reached a thickness of 10 μm on contacting asperities in the low and medium-Cr steels, thus oxidative mild wear prevailed. At 400 °C, a great amount of tribo-oxides appeared in the low and medium-Cr steels; unexpectedly, the high-Cr steel had more tribo-oxides than the low or medium-Cr steels in some cases. Its high wear resistance may be attributed to Cr-strengthened adhesion power of tribo-oxides and matrix.  相似文献   

18.
This paper proposes a sliding-mode repetitive learning control (SMRLC) scheme with an integral sliding-mode perturbation observer (ISMPO) for repetitive tracking control tasks. The three control strategies which are synthesized to yield excellent tracking performance are: (1) the pole-placement feedback control to specify the desired error dynamics; (2) ISMPO-based feedback compensation as the robust part; and (3) a feedforward learning component that refines the control to improve system performance through repetitive trials. The ISMPO-based feedback compensation ensures that there is only small tracking error during initial learning trials and enhances system insensitivity to exceptional and aperiodic disturbances. The feedforward learning compensation is updated according to a certain switching signal that is equivalent to the compensation error of the feedforward control, yielding fast convergence of the learning process from trial to trial. Experimental results demonstrate the feasibility of the proposed scheme.  相似文献   

19.
20.
Liu L  Tan KK  Chen SL  Huang S  Lee TH 《ISA transactions》2012,51(3):430-438
In this paper, the singular value decomposition (SVD) based identification and compensation of the hysteretic phenomenon in piezo actuators are addressed using a Preisach model. First, this paper presents an SVD-based least squares algorithm and a revision approach of the identification through updating the SVD. With the identified parameters and a log of the memory curve, a Preisach-based inversion compensator is constructed which is complemented with a feedback controller to address the inevitable and residual modeling errors. Experimental results are furnished for both the identification and compensation approaches. The Preisach-based feedforward controller significantly improves the tracking performance and reduces the root-mean-square (RMS) tracking error of a PID controller by 76.7% and 89% at 1 Hz and 25 Hz, respectively. With the proposed composite controller, the percent-RMS errors at 1 Hz and 25 Hz are reduced to 0.035% and 0.31%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号