首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High thermal conductivity, polycrystalline, AIN ceramics are being considered as microelectronic packaging materials. Careful microstructural characterization of AIN with various Y2O3 contents has been used to determine the particular yttrium aluminate second phases formed on sintering. The presence and morphology of the aluminates explains the variation of thermal conductivity with Y2O3 content and gives an indication of the sintering mechanism.  相似文献   

2.
Starting from three different commercial powders, AIN materials were densified by pressureless sintering under various temperature and time values in order to investigate the influence of microstructure on thermal conductivity. The influence of the sintering aids (3 wt% Y2O3 and 2 wt% CaC2) and of the forming processes (cold isostatic pressing and thermocompression of tape cast pieces) were also been evaluated. Thermal conductivity increased with the purity level of the starting powder and with an increasing the sintering temperature and soaking time. The highest thermal conductivity values (196 Wm–1 K–1) were obtained with the purest powder and high temperature (1800 °C) sintering over long periods (6 h). No influence on thermal conductivity was detected from the forming technique.  相似文献   

3.
The effect on AIN ceramic of the addition of Y2O3, Yb2O3, Er2O3 and CaO were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermal conductivity measurements. The effect of grain boundary segregation and second phase distribution on the thermal conductivity are discussed. The Er2O3-CaO-and the Yb2O3-CaO-AIN ceramics have a higher thermal conductivity than the CaO-and the Y2O3-CaO-AIN ceramics. This is explained on the basis of the free energy of formation (G°), the vaporization of the sintering additives and the microstructural development. Oxidation of freshly cleaned surfaces of those AIN ceramics was studied.  相似文献   

4.
Extremely large grain size AIN ceramics were produced by HIP sintering at an ultra-high temperature of 2773 K without reducing the oxygen content in order to determine experimentally whether the factor controlling thermal conductivity is either grain boundaries or the internal structure of the grains. The room-temperature thermal conductivity of the HIPed AIN with a grain size of 40 m was 155 Wm–1 K–1, and was almost equal to that of the normally sintered AIN with a grain size of 4 m. Therefore, thermal conductivity at room temperature is independent of AIN grain size, or the number and amount of grain-boundary phase for reasonably well-sintered AIN ceramics. The calculated phonon mean free path of sintered bodies was 10–30 nm at room temperature, which is too small to compare with the AIN grain size. Consequently, it is shown that the thermal conductivity of sintered AIN is controlled by the internal structure of the grains, such as oxygen solute atoms.  相似文献   

5.
Dense aluminum nitride (AlN) ceramics were prepared by Spark Plasma Sintering with rare-earth oxide and CaF2 as sintering additives. The effect of sintering additives on the density, phase composition, microstructure and thermal conductivity of AlN ceramics was investigated. The results showed that those sintering additives not only promoted densification through liquid-phase sintering but also improved thermal conductivity by decreasing oxygen impurities. Thermal conductivities of samples sintered with optimum proportion of rare-earth oxide and CaF2 were higher than those of other samples. During the Spark Plasma Sintering process, the microstructures, especially the content and distribution of secondary phases, played important roles on the thermal conductivity of AlN ceramics.  相似文献   

6.
The addition of both SiO2 and Y2O3 to AIN led to decrease of 27R polytype in specimens sintered above 1600° C and also to an increase of thermal diffusivity of AIN ceramics. Furthermore, SiO2 and Y2O3 added AIN ceramics were fully densified by liquid-phase sintering, and resulted in higher thermal diffusivity. The formation temperature of the liquid phase was lowered more by the addition of both SiO2 and Y2O3 than only Y2O3 to AIN ceramics.  相似文献   

7.
The effects of Y2O3 content, sintering time, sintering temperature, sintering pressure on thermal conductivity of AlN ceramics had been studied. X-ray diffraction (XRD), scanning electron microscope (SEM), laser conductometer and laser granularity dimension analysis measurer were respectively used to measure the phases, microstructure, thermal conductivity and particle size distribution of the samples. These studies reveal that the Y2O3 is an effective sintering addtive, and the best conditions of sintering are that the pressure is 5.15× 109 Pa, the temperature is 1700∘C and the sintering time is 115 min. Under these conditions, the sintered body has reasonable structure and its thermal conductivity is 200 w/(m⋅k).  相似文献   

8.
Abstract

Dense aluminium nitride ceramics were prepared by spark plasma sintering at a lower sintering temperature of 1700°C with Y2O3, Sm2O3 and Dy2O3 as sintering additives respectively. The effects of three kinds of sintering additives on the phase composition, microstructure and thermal conductivity of AlN ceramics were investigated. The results showed that those sintering additives not only facilitated the densification via the liquid phase sintering mechanism, but also improved thermal conductivity by decreasing oxygen impurity. Sm2O3 could effectively improve thermal conductivity of AlN ceramics compared with Y2O3 and Dy2O3. Observation by scanning electron microscopy showed that AlN ceramics prepared by spark plasma sintering method manifested quite homogeneous microstructures, but AlN grain sizes and shapes and location of secondary phases varied with the sintering additives. The thermal conductivity of AlN ceramics was mainly affected by the additives through their effects on the growth of AlN grain and the location of secondary phases.  相似文献   

9.
研究了AlN/CNT复相陶瓷的致密化、热传导和介电性能,结果表明,采用SPS能够降低材料的烧结难度,促进AlN晶粒充分长大和氧杂质的去除,改善热导率,在Ka波段(26.5-40.0GHz),介电常数实部与烧结温度无关,虚部则由于高温烧结导致CNT结构坍塌而下降,适当的CNT量和烧结温度能够兼顾介电损耗、高热导率以及适中的介电常数。  相似文献   

10.
As-fired aluminium nitride (AIN) substrates with smooth and uniform surface have been developed by green sheet and firing technology. The effect of setting for firing on surface roughness was investigated. AIN substrates were fabricated by pressureless sintering of green sheets piled up and sandwiched between AIN plates in an AIN crucible. The thermal conductivity, surface roughness and bending strength of the substrate sintered at 1770 °C for 2 h under a pressure of 1 MPa nitrogen were 194 Wm–1 K–1, 0.15 (m and 353 MPa, respectively.  相似文献   

11.
Hot-pressed AlN-Cu metal matrix composites and their thermal properties   总被引:3,自引:0,他引:3  
AlN-Cu metal matrix composites containing AlN volume fractions between 0.1 and 0.5 were fabricated firstly by liquid phase sintering of AlN using Y2O3 as a sintering aid and then by hot pressing the powder mixtures of sintered AlN and Cu at 1050°C with a pressure of 40 MPa under flowing nitrogen. With Y2O3 additions of 1.5 to 10 wt%, the densification of AlN could be achieved by liquid phase sintering at 1900°C for 3 h and subsequently slow cooling. The sintered AlN showed a maximum thermal conductivity of 166 W/m/K at a Y2O3 level of 6 wt%. Dense AlN-Cu composites with AlN contents up to 40 vol% were achieved by hot pressing. The thermal conductivity and the coefficient of the thermal expansion (CTE) of the composites decreased with increasing AlN volume fractions, giving typical values of 235 W/m/K and 12.6 × 10–6/K at an AlN content of 40 vol%.  相似文献   

12.
The effect of starting Al2O3 raw materials on the synthesis of AIN powder by Al2O3 carbothermal reduction was investigated. The reactivity of-Al2O3 among other materials, is excellent, at 1500° C. The skeleton of raw powders remains in the AIN particle shape. The thermal conductivity for hot-pressed AIN was severely affected by the oxygen content in AIN powder.  相似文献   

13.
Instead of Y2O3 powders, yittrium isopropoxide (YIP) was used as a sintering additive to sinter high thermal conductivity polycrystalline aluminum nitride (AlN). The reasons for using sintering additive in sol-gel form are due to the fact that the particle sizes are uniform in the nano scale and also they promote a better coating of AlN grains, being more effective during sintering process. The binder burn out was carried in two different atmospheres, N2 (N2 BBO) and air (air BBO). The thermal conductivity of dense polycrystalline aluminum nitride samples with the addition of Y2O3 (YIP formulation) ranging from 1.0 to 10.0 wt% with N2 BBO and air BBO was measured by the laser-flash technique. The results of measured thermal conductivity exhibited higher values than those reported for samples of same yttria formulation (Y2O3 powder) and sintered conditions.  相似文献   

14.
The present study investigates the thermal conductivity of bimodal SiC particulate distribution in aluminum matrix composites fabricated via powder metallurgy route. The effects of the SiCp reinforcement size distribution and processing parameters such as sintering time and temperature on the thermal conductivity have been examined. The Box–Behnken experimental array was employed to identify the effects of selected variables on the thermal conductivity of the composite. A reasonable augmentation in the thermal conductivity was observed with an increase in sintering time and %volume fraction of fine SiC particulates. It has been demonstrated that the matrix doped with fine SiC particulates (37?µm) occupied interstitial positions and formed continuous SiC–matrix network resulting in minimizing the micropores that contributed for good thermal conductivity, that is, 235?W/mK. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were conducted to evaluate the microstructure architecture and interfacial phase formation.  相似文献   

15.
Aluminium nitride ceramics with no sintering additives could be densified to close to theoretical density (99.6% theoretical) by pressureless sintering of tape-cast green sheets at 1900 °C for 8 h. The thermal conductivity and bending strength of the specimens were 114 Wm–1 K–1 and 240 MPa, respectively. The effect of Y2O3 additive on sinterability, thermal conductivity and microstructure of aluminium nitride ceramics was investigated. Thermal conductivity increased with increasing amount of Y2O3 additive, sintering temperature and holding time at the sintering temperature. Samples with a thermal conductivity up to 258 Wm–1 K–1 were fabricated by elimination of the grain-boundary phase.  相似文献   

16.
Spark plasma sintering (SPS) is a newly developed technique that enables poorly sinterable aluminum nitride (AlN) powder to be fully densified. It is addressed that pure AlN sintered by SPS has relatively low thermal conductivity. In this work, SPS of AlN ceramic was carried out with Y2O3, Sm2O3 and Li2O as sintering aids. Effects of additives on AlN densification, microstructure and properties were investigated. Addition of sintering aids accelerated the densification, lowered AlN sintering temperature and was advantageous to improve properties of AlN ceramic. Thermal conductivity and strength were found to be greatly improved with the present of Sm2O3 as sintering additive, with a thermal conductivity value about 131 Wm−1K−1 and bending strength about 330 MPa for the 2 wt% Sm2O3-doped AlN sample SPS at 1,780 °C for 5 min. XRD measurement revealed that additives had no obvious effect on the AlN lattice parameters. Observation by SEM showed that AlN ceramics prepared by SPS method manifested quite homogeneous microstructure. However, AlN grain sizes and shapes, location of secondary phases varied with the additives. The thermal conductivity of AlN ceramics was mainly affected by the additives through their effects on the growth of AlN grain and the location of liquid phases.  相似文献   

17.
Abstract

Yb2O3 is an efficient sintering additive for enhancing not only thermal conductivity but also the high-temperature mechanical properties of Si3N4 ceramics. Here we report the fabrication of dense Si3N4 ceramics with high thermal conductivity by the gas pressure sintering of α-Si3N4 powder compacts, using only Yb2O3 as an additive, at 1900 °C under a nitrogen pressure of 1 MPa. The effects of Yb2O3 content, sample packing condition and sintering time on the densification, microstructure and thermal conductivity were investigated. Curves of the density plotted against the Yb2O3 content exhibited a characteristic ‘N’ shape with a local minimum at 3 mol% Yb2O3 and nearly complete densification below and above this concentration. The effects of the sample packing condition on the densification, microstructure and thermal conductivity strongly depended on the Yb2O3 content. The embedded condition led to more complete densification but also to a decrease in thermal conductivity from 119 to 94 W m-1 K?1 upon 1 mol% Yb2O3 addition. The sample packing condition had little effect on the density and thermal conductivity (102–106 W m?1 K?1) at 7 mol% Yb2O3. The thermal conductivity value was strongly related to the microstructure.  相似文献   

18.
Aluminum nitride (AIN) ceramics, with binary additives B2O3-Y2O3, were sintered at temperatures from 1700 to 1850 °C. The microstructure and sintering characteristics were studied by XRD, HREM, SEM and TEM/EDS, which showed that Y2O3 gave different yttrium aluminates through the reaction with Al2O3 under different conditions. With the increase of sintering temperature, the yttrium-to-aluminum atomic ratio Y/Al decreased in the secondary phases of the sintered bodies. It was discovered that B2O3 could dissolve in the yttrium aluminates, forming some ordered structure with a superlattice. After sintering at 1850 °C for 4 h, a specimen with a fine microstructure and a thermal conductivity of 190 Wm–1K–1 was obtained.  相似文献   

19.
Thermal conductivity of calcium-doped aluminium nitride ceramics   总被引:1,自引:0,他引:1  
Aluminium nitride ceramics were prepared with the addition of up to 12wt% of calcium oxide as a sintering aid. Both the oxygen and the calcium content of the samples decreased during sintering with increasing sintering temperature and soaking time. Higher amounts of calcium oxide resulted in higher thermal conductivities, with values up to 142 W m–1 K–1. Moderate sintering temperatures, short temperature soaking times and the use of inexpensive Ca-based sintering additives should enable the production of aluminium nitride ceramics with sufficiently high thermal conductivity at relatively low cost.  相似文献   

20.
Yb2O3 is an efficient sintering additive for enhancing not only thermal conductivity but also the high-temperature mechanical properties of Si3N4 ceramics. Here we report the fabrication of dense Si3N4 ceramics with high thermal conductivity by the gas pressure sintering of α-Si3N4 powder compacts, using only Yb2O3 as an additive, at 1900 °C under a nitrogen pressure of 1 MPa. The effects of Yb2O3 content, sample packing condition and sintering time on the densification, microstructure and thermal conductivity were investigated. Curves of the density plotted against the Yb2O3 content exhibited a characteristic ‘N’ shape with a local minimum at 3 mol% Yb2O3 and nearly complete densification below and above this concentration. The effects of the sample packing condition on the densification, microstructure and thermal conductivity strongly depended on the Yb2O3 content. The embedded condition led to more complete densification but also to a decrease in thermal conductivity from 119 to 94 W m-1 K−1 upon 1 mol% Yb2O3 addition. The sample packing condition had little effect on the density and thermal conductivity (102–106 W m−1 K−1) at 7 mol% Yb2O3. The thermal conductivity value was strongly related to the microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号