首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
The presence of the non-selective protein kinase C (PKC) inhibitors, staurosporine (100 nM) and polymyxin B (100 microM) in cultured human RPE cells for more than 24 h triggers apoptotic death. Apoptosis is characterized by a diminishing number of cells, a labelling of nuclei by the TUNEL method and by observable morphological changes. An inhibitor of PKC and cyclic nucleotide-dependent protein kinases, 1-(5-isoquinolinesulphonyl)-2-methyl piperazine (H-7; 100 microM), was without effect, as was the specific PKC inhibitor, calphostin C (100 nM). The PKC-activating phorbol esters, phorbol-12-myristate-13-acetate (PMA; 1 microM) and phorbol-12,13-dibutyrate (PDB; 1 microM) and the non-tumour-promoting phorbol ester, 4 alpha-PMA (1 microM) were without effect, as was the diacyl glycerol analogue, 1,2-dioctanoyl-snglycerol (DOG; 10 microM). The PKC activators did not attenuate the apoptosis induced by staurosporine or polymyxin B. Furthermore, deprivation of glucose and oxygen (simulated ischemia) for 72 h induced apoptosis: this could be prevented by inclusion of 10% (v/v) foetal bovine serum (FBS) but not by a variety of PKC activators. Six PKC isoenzymes were shown to be present in RPE cells (alpha, beta 1, beta 2, delta, epsilon, E) and only the calcium-dependent cPKC levels changed after treatment with staurosporine or simulated ischaemia. Since only the less selective inhibitors of PKC induced apoptosis, it is suggested that PKC is not involved directly in the induction process of apoptosis in RPE cells. It is possible that the staurosporine and polymyxin B-induced effects of apoptosis in RPE cells are triggered by an unknown kinase-dependent pathway, but whether the 'ischaemia'-induced death is related to this same process remains to be elucidated.  相似文献   

2.
Flupirtine is a triaminopyridine-derived centrally acting analgesic, which interacts with mechanisms of noradrenergic pain modulation. Recently, it has been found to display neuroprotective effects in various models of excitotoxic cell damage, global and focal ischemia. Although this profile suggests that flupirtine acts as an antagonist of the N-methyl-D-aspartate (NMDA) and glutamate-triggered Ca2+ channel, there is no direct interaction with the receptor. In this paper, we examined whether flupirtine can act as an antioxidant and prevent free radical-mediated structural damage. Flupirtine at 5-30 microM inhibited ascorbate/ Fe2+ (1-10 microM)-stimulated formation of thiobarbituric reactive substances, an indicator of lipid peroxidation, in rat brain mitochondria. Interestingly, we found an increasing effectiveness of the drug at higher iron concentrations. Additionally, higher concentrations of flupirtine also provided protection against protein oxidation, as demonstrated by a decrease in protein carbonyls formed after treatment of rat brain homogenates with ascorbate/Fe2+. In PC12 cell culture, flupirtine at 10-100 microM was able to attenuate H2O2-stimulated cell death and improve the survival by 33%.  相似文献   

3.
We tested the effect of flupirtine against ischemic and excitotoxic neuronal damage as well as on the glutamate-induced rise in cytosolic calcium ion concentration (= [Ca2+]i). For in vivo experiments we used a model of focal cerebral ischemia in mice. The middle cerebral artery was permanently occluded and 48 h afterwards brain tissue was stained with neutral red, perfusion-fixed and the infarct surface was determined planimetrically. Pretreatment with flupirtine significantly reduced the infarct area (controls: 24.3 +/- 4.8 mm2, 1 mg/kg flupirtine: 20.1 +/- 3.6 mm2 and 10 mg/kg flupirtine: 19.5 +/- 3.9 mm2; P < 0.05), whereas postischemic application of flupirtine failed to reduce the infarct area. For in vitro studies, primary neuronal cultures were prepared from the hippocampi of newborn rats and excitotoxic damage was induced by exposing the cells to 500 mu M L-glutamate for 30 min. We could demonstrate that flupirtine (1-10 microM) was capable of protecting neurons against glutamate-induced cytotoxicity. In order to elucidate the underlying mechanism of action, we tested the effect of flupirtine on the glutamate-induced rise in [Ca2+]i using the Ca2+-indicator fura-2. L-Glutamate added in a final concentration of 100 microM to the cultured cells for 16 s caused a rise in [Ca2+]i from about 100 nM to 900 nM. Flupirtine (0.1-10 microM) reduced the glutamate-induced rise in [Ca2+]i concentration dependently.  相似文献   

4.
Effective drugs are not available to protect against beta-amyloid peptide (A beta)-induced neurotoxicity. Cortical neurons from rat embryos were treated with the toxic fragment A beta25-35 at 1 microM in the presence or absence of flupirtine, a triaminopyridine, successfully applied clinically as a nonopiate analgesic drug. Five days later 1 microM A beta25-35 caused reduction of cell viability to 31.1%. Preincubation of cells with flupirtine (1 or 5 microg/ml) resulted in a significant increase of the percentage of viable cells (74.6 and 65.4%, respectively). During incubation with A beta25-35 the neurons undergo apoptosis as determined by appearance of the characteristic stepladder-like DNA fragmentation pattern and by the TUNEL technique. A beta25-35-induced DNA fragmentation could be abolished by preincubation of the cells with 1 microg/ml flupirtine. Incubation with A beta25-35 reduces the intraneuronal level of GSH from 21.4 to 7.4 nmol/10(6) cells. This depletion could be partially prevented by preincubation of the cells with flupirtine. Thus, flupirtine may be adequate for the treatment of the neuronal loss in Alzheimer's disease (where A beta accumulates in senile plaques) and probably other neurological diseases such as amyotrophic lateral sclerosis.  相似文献   

5.
1. Flupirtine (Katadolon) is a member of a class of triaminopyridines and is used as a nonopioid analgesic agent with muscle relaxant properties. 2. In situ experiments have revealed that flupirtine protects against ischemic-induced insults to the retina and brain. 3. Data derived from in vitro and in vivo studies suggest that flupirtine functions as a weak N-methyl-D-aspartate (NMDA) antagonist with little evidence that it acts on AMPA-kainate type glutamate receptors. 4. No evidence could be found from binding studies to suggest that flupirtine has an affinity for any of the characterized binding sites associated with the NMDA receptor. 5. Studies on cultured cortical neurons show that the NMDA-induced influx of 45Ca2+ is more readily decreased by flupirtine when a reducing agent (dithiothreitol) is present. However, when N'-ethylmaleimide, which is thought to alkylate the NMDA receptor redox site, is present, no obvious effect on the NMDA-induced influx of 45Ca2+ is produced by flupirtine. 6. Flupirtine is also known to counteract the production of reactive oxygen species caused by ascorbate/iron as well as to prevent apoptosis in cells lacking NMDA receptors induced by oxidative stress. 7. To explain all the experimental data, it is suggested that flupirtine affects the redox state/pH/electrons in the cell. The specific way by which flupirtine antagonizes the NMDA receptor might be by an action on the known redox site of the receptor.  相似文献   

6.
Perfusion of 100 microM melatonin had no effect on low frequency synaptic transmission, but prevented the induction of tetanically induced long-term potentiation (LTP) when recorded in the dendritic region of the CA1 in rat hippocampal slices. Perfusion of 100 microM melatonin in this preparation had no effect on the multiple population spikes recorded in Mg2+-free medium, and, in grease-gap recordings from the CA1-subiculum slice, 100 microM melatonin had no effect on depolarisations evoked by N-methyl-D-aspartate (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). This suggests that melatonin has the ability to prevent the formation of LTP, and that this effect is not mediated by blockade of NMDA receptors.  相似文献   

7.
The pineal hormone melatonin protects neurons in vitro from excitotoxicity mediated by kainate-sensitive glutamate receptors and from oxidative stress-induced DNA damage and apoptosis. Intraperitoneal injection on kainate into experimental animals triggers DNA damage in several brain areas, including the hippocampus. It is not clear whether melatonin is neuroprotective in vivo. In this study, we tested the in vivo efficacy of melatonin in preventing kainate-induced DNA damage in the hippocampus of adult male Wistar rats. Melatonin and kainate were injected i.p. Rats were killed six to 72 h later and their hippocampi were examined for evidence of DNA damage (in situ dUTP-end-labeling, i.e. TUNEL staining) and for cell viability (Nissl staining). Quantitative assay was performed using computerized image analysis. At 48 and 72 h after kainate we found TUNEL-positive cells in the CA1 region of the hippocampus; in the adjacent sections that were Nissl-stained, we found evidence of cell loss. Both the number of TUNEL-positive cells and the loss of Nissl staining were reduced by i.p. administration of melatonin (4 x 2.5 mg/kg; i.e. 20 min before kainate, immediately after, and 1 and 2 h after the kainate). Our results suggest that melatonin might reduce the extent of cell damage associated with pathologies such as epilepsy that involve the activation of kainate-sensitive glutamate receptors.  相似文献   

8.
Flupirtine belongs to the class of triaminopyridines and is successfully applied clinically as a non-opiate analgesic drug with additional muscle relaxant properties. Recently it was reported that flupirtine acts like an antagonist of the N-methyl-D-aspartate (NMDA) receptor complex in neuronal cells both in vitro and in vivo. Here we have used primary cortical cells from rat embryos to demonstrate that this compound is also neuroprotective against the toxic effects caused by the prion agent PrPSc and lead acetate (Pb). These two agents display pleiotropic effects on neurons, which include activation of the NMDA receptor complex. At concentrations above 30 microM the toxic-peptide fragment of PrPSc causes apoptotic fragmentation of DNA and is consequently neurotoxic. Pb is neurotoxic at concentrations above 10 microM. Co-administration of flupirtine (10 microM) with either of these agents resulted in reduced neurotoxicity. These data indicate that the cytoprotective effect of flupirtine is measurable in vitro against these noxious agents which show their effects, including modulation of the NMDA receptor complex, pleiotropically.  相似文献   

9.
Acylated derivatives of ascorbic acid were found to be active in a number of biochemical and physiological processes. In the present study we investigated the effects of 6-O-palmitoyl ascorbate on collagen synthesis by cultured foreskin human fibroblasts. Our observations indicate a marked stimulatory effect on collagen synthesis by 6-O-palmitoyl ascorbate in the concentration range of 5-20 microM, while the synthesis stimulated by ascorbic acid was maximal at concentrations of 20-100 microM. Cells treated with 10 microM palmitoyl ascorbate for 36 h exhibited a production of collagen threefold greater than those in the presence of 10 microM ascorbic acid, and it was about the same as in cells treated with 100 microM ascorbic acid. By 48 h differences were not significant. Acylated ascorbate impaired vitality of the treated fibroblasts at concentrations exceeding 20 microM in media supplemented with 0.5% FCS. However, most of the cytotoxic effect was neutralized by FCS at a concentration of 10%. The resistance of acylated ascorbate against oxidative degradation as well as the role of free radicals in the modulation of collagen synthesis by ascorbic acid and by its derivatives is discussed.  相似文献   

10.
Ascorbic acid is an important antioxidant in human plasma, but requires efficient recycling from its oxidized forms to avoid irreversible loss. Human erythrocytes prevented oxidation of ascorbate in autologous plasma, an effect that required recycling of ascorbate within the cells. Erythrocytes had a high capacity to take up dehydroascorbate, the two-electron oxidized product of ascorbate, and to reduce it to ascorbate. Uptake and conversion of dehydroascorbate to ascorbate was saturable, was half-maximal at 400 microM dehydroascorbate, and achieved a maximal intracellular ascorbate concentration of 1.5 mM. In the presence of 100 microM dehydroascorbate, erythrocytes had the capacity to regenerate a 35 microM ascorbate concentration in blood every 3 min. Ascorbate recycling from DHA required intracellular GSH. Depletion of erythrocyte GSH by more than 50% with diamide did not acutely affect the cellular ascorbate content, but did impair the subsequent ability of GSH-depleted cells to recycle dehydroascorbate to ascorbate. Whereas erythrocyte ascorbate recycling was coupled to GSH, an overwhelming extracellular oxidant stress depleted both ascorbate and alpha-tocopherol before the GSH content of cells fell appreciably. Recycled ascorbate was released from cells into plasma, but at a rate less than one tenth that of dehydroascorbate uptake and conversion to ascorbate. Nonetheless, ascorbate released from cells protected endogenous alpha-tocopherol in human LDL from oxidation by a water soluble free radical initiator. These results suggests that recycling of ascorbate in erythrocytes helps to maintain the antioxidant reserve of whole blood.  相似文献   

11.
BACKGROUND: The intravitreal injection of ornithine produces selective damage to the retinal pigment epithelium (RPE) and results in a loss of RPE, choriocapillaris and photoreceptor cells. To elucidate the mechanism of secondary retinal atrophy, we investigated the presence of apoptotic cells in a rat model of ornithine-induced retinopathy. METHODS: At 6 and 12 h and 1, 2, 4, 7, 14 and 28 days after an intravitreal injection of L-ornithine hydrochloride in rat eyes, we removed the eyes and subjected them to histopathological examination. We detected apoptotic cells by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate digoxigenin nick end labeling (TUNEL) assay, which stains the 3'-OH ends of fragmented DNA. We used electron microscopy to detect the apoptotic cells morphologically. RESULTS: RPE cells were selectively damaged immediately after ornithine administration. TUNEL-positive photoreceptor cells appeared exclusively in the photoreceptor cell layer 12 h after ornithine administration. The number of TUNEL-positive cells increased throughout the 2 days following the injection, then decreased markedly. TUNEL-positive cells remained until 28 days, when the photoreceptor cells had disappeared. The ganglion cell layer, inner nuclear layer and damaged RPE cells were negative for TUNEL staining during all stages. The electron microscopic study also revealed the pyknotic nuclei of apoptotic photoreceptor cells. CONCLUSION: An intravitreal injection of ornithine caused primary damage to the RPE, and subsequently some of the photoreceptor cells revealed apoptosis by TUNEL assay. These findings suggest the dysfunction of the RPE causes photoreceptor cell death according to the intrinsic program of an apoptotic mechanism.  相似文献   

12.
Retinal pigment epithelium (RPE) cells migrating through the damaged retina play an important role in the pathogenesis of proliferative vitreoretinopathy (PVR). We found that alpha-tocopherol (vitamin E) inhibits proliferation of human RPE in culture without exerting cytotoxic effects. Maximal inhibition was achieved with 100 microM alpha-tocopherol. Our result could explain the observation that vitamin E supplements have an adverse effect on light-damaged retina and on the course of retinitis pigmentosa. Since it has been shown that supplemental oral administrations of vitamin E can raise the RPE concentration of alpha-tocopherol well above 100 microM and supplementation is not associated with any clinical relevant adverse effect, we believe that vitamin E could be beneficial in the treatment of PVR.  相似文献   

13.
The pineal hormone, melatonin, was recently found to be a potent free scavenger for hydroxyl and peroxyl radicals. Melatonin also inhibits neuronal and thymocyte damage due to oxidative stress. Atherosclerosis development is mediated by low-density lipoprotein (LDL) oxidation and the endocytosis of oxidized LDL by resident macrophages in the subendothelial vascular wall. Furthermore, the cytotoxic effect of oxidized LDL increases atherogenicity. The goal of this study was to compare the antioxidant activities of melatonin and vitamin E against in vitro LDL oxidation and their cytoprotective actions against oxidized LDL-induced endothelial cell toxicity. An attempt at loading LDL with melatonin by incubating human plasma with an ethanolic melatonin solution gave only low protection against Cu2+-induced LDL oxidation in comparison with vitamin E and gave no detectable incorporation of melatonin into LDL, measured by high-performance liquid chromatography (HPLC) coupled to UV detection. High concentrations of melatonin (10-100 microM) added to the oxidative medium induced a clear inhibition of Cu2+-induced LDL oxidation, characterized as an increase in the lag-phase duration of conjugated diene formation and decreases in the maximal rate of the propagation phase and in the maximal amount of conjugated diene formation. Determination of the median efficacious dose (ED50) of melatonin and vitamin E by their ability to increase lag-phase duration showed that melatonin was less active than vitamin E (ED50, 79 vs. 10 microM, respectively). Melatonin was also less active than vitamin E in limiting the formation of thiobarbituric acid-reactive substances (TBARS) and LDL fluorescence intensity increase in the medium during Cu2+-induced LDL oxidation. Cu2+-induced LDL oxidation in the presence of 100 microM melatonin produced oxidized LDLs that were less recognizable for the scavenger receptors of J774 macrophages than were untreated LDLs. Vitamin E, 10 microM, was more active than 100 microM melatonin in inhibiting LDL oxidation and the resulting lipoprotein alterations leading to binding internalization and degradation by the J774 macrophages. Vitamin E, 100 microM, inhibited the pursuit of the oxidation of oxidized LDL mediated by bovine aortic endothelial cells (BAECs) in a culture medium containing Cu2+, whereas 100 microM melatonin had no antioxidant effect. Melatonin, 100 microM, as well as 100 microM vitamin E inhibited intracellular TBARS formation during the incubation of BAECs with highly oxidized LDL but had no influence on the increase in glutathione (GSH) concentration during this lengthy exposure (16 h) of BAECs to highly oxidized LDL. During this period, the same dose of vitamin E but not of melatonin tended to limit the decrease in adenosine triphosphate (ATP) concentration. Vitamin E, 100 microM, did not significantly reduce cellular lactate dehydrogenase (LDH) release in the culture medium during the incubation of oxidized LDL with BAECs, whereas 100 microM melatonin dramatically increased this release. These data show that melatonin is less active than vitamin E in inhibiting in vitro LDL oxidation and does not inhibit the cytotoxicity of oxidized LDL toward cultured endothelial cells. The concentrations necessary to inhibit LDL oxidation are far beyond those found in human plasma (100 microM vs. 100 pM). Therefore our results indicate that the pineal hormone melatonin per se appears to have little antiatherogenic property in the in vitro oxidation of LDL and the cytoprotective action against the toxicity of oxidized LDL. Nevertheless, in vivo LDL oxidation takes place in the subendothelium of the artery wall, and nothing is known about the concentration of melatonin or its catabolites in this environment.  相似文献   

14.
Young (50 days old) and old (18 months old) Sprague-Dawley rats were injected with mycobacterial Freund's adjuvant to produce an inflammatory disease of the joints and were studied the day before, and on days 6, 12 and 18 after injection. At every postinjection interval examined, old rats had significantly lower circadian amplitudes of pineal melatonin content. On day 18 of arthritis development, decreased levels of pineal melatonin were also seen in young rats. A second study, carried out 18 days after the injection of Freund's complete adjuvant and after 17 daily injections of 10 or 100 microg of melatonin in the evening, indicated that melatonin treatment restored the inflammatory response in old rats (assessed plethysmographically in hind paws) to the level found in young animals. In young rats, an inflammation-promoting effect of 100 microg melatonin could be demonstrated. As a consequence of the immune reaction, submaxillary lymph node and splenic ornithine decarboxylase activity (an index of lymph cell proliferation) augmented significantly, with acrophases of 24-hour rhythms in the afternoon for lymph nodes or in the morning for spleen. Mesor and amplitude of ornithine decarboxylase rhythm were lowest in old rats, while melatonin injection generally augmented its amplitude. Lymph node and splenic tyrosine hydroxylase activity (a presynaptic adrenergic marker) reached maximal values during early night hours while maximal values of [3H]acetylcholine synthesis (a presynaptic cholinergic marker) occurred during the afternoon in lymph nodes. Amplitude and mesor of these rhythms were lowest in old rats, an effect generally counteracted by melatonin treatment. The results suggest that inflammation is accompanied by an age-dependent, significant depression of pineal melatonin synthesis during adjuvant-induced arthritis and a decreased amplitude of the circadian rhythm of immune cell proliferation and autonomic activity in lymph nodes and spleen. These effects are counteracted by injection of melatonin, mainly in old rats.  相似文献   

15.
1. Flupirtine is an analgesic agent which exhibits neuronal cytoprotective activity and may have value in the treatment of conditions involving cell injury and apoptosis. Since flupirtine has no action on known receptor sites we have investigated the effect of this drug on mitochondrial membrane potential, and the changes in intramitochondrial calcium concentration in particular. 2. The findings show that flupirtine increases Ca2+ uptake in mitochondria in vitro. At clinically relevant flupirtine concentrations, corresponding to flupirtine levels in vitro of 0.2 to 10 nmol mg(-1) mitochondrial protein, there was a 2 to 3 fold increase in mitochondrial calcium levels (P<0.01). At supra-physiological flupirtine concentrations of 20 nmol mg(-1) mitochondrial protein and above, the mitochondrial calcium concentrations were indistinguishable from those in untreated mitochondria. 3. Mitochondrial membrane potential closely paralleled the changes in mitochondrial calcium levels showing a 20% (P<0.01) increase when the flupirtine concentration was raised from 0.2 nmol to 10 nmol mg(-1) mitochondrial protein and a return to control values at 20 nmol mg(-1) protein. 4. The increase in mitochondrial calcium uptake and membrane potential were accompanied by an increase in mitochondrial ATP synthesis (30%; P<0.05) and a similar percentage reduction in mitochondrial volume. 5. Calcium at 80 and 160 nmol mg(-1) mitochondrial protein decreased ATP synthesis by 20-25% (P<0.001). This decrease was prevented or diminished if flupirtine at 10 nmol mg(-1) protein was added before the addition of calcium. 6. Since intracellular levels of flupirtine in intact cells never exceeded 10 nmol mg(-1) mitochondrial protein, these findings are supportive evidence for an in vivo cytoprotective action of flupirtine at the mitochondrial level.  相似文献   

16.
The effect of oxidative stress on myogenic cells with expanded CTG repeats in the myotonin protein kinase (MtPK) gene was investigated using MtPK cDNA-transformants in order to investigate the disease process underlying myotonic dystrophy. We employed methylmercury as a model for reagents that produce reactive oxygen species (ROS). Mutant MtPK cDNA transformants containing 46 CTG repeats treated with 1 microM methylmercury for 24 h underwent cell death showing the characteristics of apoptosis. In contrast, methylmercury-induced cytotoxicity was weaker in wild type MtPK cDNA transformants. Antioxidants such as N-acetyl-L-cysteine and trolox suppressed methylmercury-induced apoptosis, indicating that the intracellular generation of ROS plays an important role. These studies suggest that expanded CTG repeats in MtPK increase the susceptibility of cells to oxidative stress.  相似文献   

17.
In the present study the effect of ascorbate (0.8 mM)/iron (2.5 microM) on lipid and protein oxidation, in Synaptosomes isolated from rat brain cortex, was evaluated. Vitamin E, idebenone and reduced glutathione were used as free radicals scavengers, in order to analyze the mechanism involved in ascorbate/iron-induced oxidative stress. An increased formation of reactive oxygen species (ROS) in the cytosol and in the mitochondria was observed, in ascorbate/iron treated synaptosomes. Idebenone (50 microM) prevented the increased formation of ROS in both synaptosomal compartments, vitamin E (150 microM) protected partially this formation in mitochondria, whereas reduced glutathione (250 microM) (GSH) was ineffective. After ascorbate/iron treatment an increase in lipid peroxidation occurred as compared to control, which was completely inhibited by idebenone. A decrease in protein-SH content was also observed, and it was prevented by Vitamin E, idebenone and GSH. When synaptosomes were treated with ascorbate/iron the levels of GSH decreased, and the levels of oxidized glutathione (GSSG) increased as compared to controls under these conditions. Glutathione peroxidase activity was unchanged, whereas an inhibition of glutathione reductase activity was observed. These data suggest that the increased formation of free radicals in synaptosomes leads to lipid and protein oxidation, the role of the endogenous GSH being essential to protect protein thiol-groups against oxidative damage in order to maintain enzyme activity.  相似文献   

18.
We have previously demonstrated that the neuroprotective effect of the beta2-adrenoceptor agonist clenbuterol in vitro and in vivo was most likely mediated by an increased nerve growth factor (NGF) expression. In the present study, we examined whether clenbuterol was capable of inhibiting apoptosis caused by ischemia. Transient forebrain ischemia was performed in male Wistar rats (300 to 350 g) by clamping both common carotid arteries and reducing the blood pressure to 40 mm Hg for 10 minutes. Clenbuterol (0.1, 0.5, and 1.0 mg/kg intraperitoneally) was administered 3 hours before ischemia or immediately after ischemia. The brains were removed for histologic evaluation 7 days after ischemia. The time course of DNA fragmentation was determined 1, 2, 3 and 4 days after ischemia. Staining with terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) was used for further analysis of DNA fragments in situ 3 days after ischemia. The NGF protein was assayed by enzyme-linked immunosorbent assay. Ten-minute forebrain ischemia damaged 80% to 90% of the neurons in the hippocampal CA1 region evaluated 7 days after ischemia. Pretreatment with clenbuterol (0.5 and 1.0 mg/kg) reduced the neuronal damage by 18.1% (P < 0.01) and 13.1% (P < 0.05), respectively. The neuroprotective effect also was found when clenbuterol (0.5 mg/kg) was administered immediately after ischemia (P < 0.05). The DNA laddering appeared in striatum 1 day and in hippocampus 2 days after ischemia and peaked on the third day in both regions. The DNA laddering was nearly abolished in the hippocampus and partially blocked in striatum and cortex by 0.5 mg/kg clenbuterol. These results were confirmed by TUNEL staining. Clenbuterol (0.5 mg/kg intraperitoneally) elevated the NGF protein level by 33% (P < 0.05) in the hippocampus and 41% (P < 0.05) in the cortex 6 hours after ischemia. Three days after ischemia, the NGF levels in these regions were no longer different between the clenbuterol-treated and control groups. This study clearly demonstrates that clenbuterol possesses a neuroprotective activity and a marked capacity to inhibit DNA degradation after global ischemia. The results suggest that clenbuterol increases NGF expression during the first hours after global ischemia and thereby protects neurons against apoptotic damage.  相似文献   

19.
PURPOSE: To compare the fluorescence properties of autofluorescent granules generated by retinal pigment epithelial (RPE) cells in vitro with those of the lipofuscin of RPE in vivo. METHODS: Cultured human RPE cells were maintained in basal medium for as long as 1 year, fed rod outer segments (ROS) daily for as long as 56 days, fed ROS in the presence and absence of leupeptin, or fed liposomes consisting of the major phospholipids in ROS. At different time points, cells were examined for overall fluorescence, and their fluorescence spectra were determined. In addition, chloroform-methanol extracts were examined by thin-layer chromatography and compared with those generated from RPE lipofuscin. RESULTS: Autofluorescent granules accumulated in cultured RPE cells, regardless of the presence of an exogenous substrate or the nature of the substrate. The rate of accumulation of autofluorescent granules was greatest in cells fed ROS. The autofluorescent material generated in cultured RPE cells had some spectral similarities with RPE lipofuscin but differed in solubility and chromatographic mobility of their constituent fluorophores. CONCLUSIONS. The autofluorescent granules generated by cultured RPE, even with different specific substrates, differ from lipofuscin granules in vivo, suggesting that additional properties of RPE cells or of the materials they phagocytose are required to produce autofluorescent materials with the characteristics of lipofuscin.  相似文献   

20.
Melatonin, the chief hormone secreted by the pineal gland, has been previously shown to inhibit human breast cancer cell growth at the physiological concentration of 1 nM in vitro. In this study, using the estrogen receptor (ER)-positive human breast tumor cell line MCF-7, we have shown that 10 microM L-buthionine-[S,R]-sulfoximine (L-BSO), an inhibitor of gamma-glutamylcysteine synthetase (the rate-limiting enzyme in glutathione synthesis), blocks the oncostatic action of 1 nM melatonin over a 5-day incubation, indicating that glutathione is required for melatonin action. The result was repeated with ZR75-1 cells, suggesting that the glutathione requirement is a general phenomenon among ER+ breast cancer cells. Addition of exogenous glutathione (1 microM) to L-BSO-treated groups restored the melatonin response in both cell lines. Further demonstration of the importance of glutathione was shown using the ER- breast tumor cell line HS578T, which is normally unresponsive to melatonin. Growth in this cell line was inhibited in the presence of 1 microM ethacrynic acid (an inhibitor of glutathione S-transferase) plus 1 nM melatonin, and this effect was blocked with 10 microM L-BSO. We also observed a steady decrease of intracellular glutathione in MCF-7 cells over a 5-day incubation, suggesting that these cells metabolize glutathione differently than do normal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号