首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study introduces a mixed H2/H fuzzy output feedback control design method for nonlinear systems with guaranteed control performance. First, the Takagi-Sugeno fuzzy model is employed to approximate a nonlinear system. Next, based on the fuzzy model, a fuzzy observer-based mixed H2/H controller is developed to achieve the suboptimal H2 control performance with a desired H disturbance rejection constraint. A robust stabilization technique is also proposed to override the effect of approximation error in the fuzzy approximation procedure. By the proposed decoupling technique and two-stage procedure, the outcome of the fuzzy observer-based mixed H2/H control problem is parametrized in terms of the two eigenvalue problems (EVPs): one for observer and the other for controller. The EVPs can be solved very efficiently using the linear matrix inequality (LMI) optimization techniques. A simulation example is given to illustrate the design procedures and performances of the proposed method  相似文献   

2.
This paper presents a systematic design methodology for fuzzy observer-based secure communications of chaotic systems with guaranteed robust performance. The Takagi-Sugeno fuzzy models are given to exactly represent chaotic systems. Then, the general fuzzy model of many well-known chaotic systems is constructed with only one premise variable in fuzzy rules and the same premise variable in the system output. Based on this general model, the fuzzy observer of chaotic system is given and leads the stability condition of a linear-matrix inequality problem. When taking the fuzzy observer-based design to applications on secure communications, the robust performance is presented by simultaneously considering the effects of parameter mismatch and external disturbances. Then, the error of the recovered message is stated in an H criterion. In addition, if the communication system is free of external disturbances, the asymptotic recovering of the message is obtained in the same framework. The main results also hold for applications on chaotic synchronization. Numerical simulations illustrate that this proposed scheme yields robust performance  相似文献   

3.
This paper presents the composite fuzzy control to stabilize the nonlinear singularly perturbed (NSP) systems with guaranteed Hinfin control performance. We use the Takagi-Sugeno (T-S) fuzzy model to construct the singularly perturbed fuzzy (SPF) systems. The corresponding fuzzy slow and fast subsystems of the original SPF system are also obtained. At first, a set of common positive-define matrices and the controller gains are determined by the Lyapunov stability theorem and linear matrix inequality (LMI) approach. Then, a sufficient condition is derived for the robust stabilization of NSP systems. The composite fuzzy control will stabilize the original NSP systems for all epsivisin(0,epsiv*) and the allowable perturbation bound epsiv* can be determined via some algebra inequalities. A practice example is adopted to demonstrate the feasibility and effectiveness of the proposed control scheme  相似文献   

4.
This paper investigates the stability analysis and performance design of nonlinear systems. To facilitate the stability analysis, the Takagi–Sugeno (T–S) fuzzy model is employed to represent the nonlinear plant. Under the imperfect premise matching in which T–S fuzzy model and fuzzy controller do not share the same membership functions, a fuzzy controller with enhanced design flexibility and robustness property is proposed to control the nonlinear plant. However, the nice characteristic given by the perfect premise matching, leading to conservative stability conditions, vanishes. In this paper, under the imperfect premise matching, information of membership functions of the fuzzy model and controller are considered in stability analysis. With the introduction of slack matrices, relaxed linear matrix inequality (LMI)-based stability conditions are derived using Lyapunov-based approach. Furthermore, LMI-based performance conditions are provided to guarantee system performance. Simulation examples are given to illustrate the effectiveness of the proposed approach.   相似文献   

5.
This paper studies the maximum stability margin design for nonlinear uncertain systems using fuzzy control. First, the Takagi and Sugeno fuzzy model is employed to approximate a nonlinear uncertain system. Next, based on the fuzzy model, the maximum stability margin for a nonlinear uncertain system is studied to achieve as much tolerance of plant uncertainties as possible using a fuzzy control method. In the proposed fuzzy control method, the maximum stability margin design problem is parameterized in terms of a corresponding generalized eigenvalue problem (GEVP). For the case where state variables are unavailable, a fuzzy observer‐based control scheme is also proposed to deal with the maximum stability margin for nonlinear uncertain systems. Using a suboptimal approach, we characterize the maximum stability margin via fuzzy observer‐based control in terms of a linear matrix inequality problem (LMIP). The GEVP and LMIP can be solved very efficiently via convex optimization techniques. Simulation examples are given to illustrate the design procedure of the proposed method.  相似文献   

6.
This paper presents an interactive graphical method to determine the set of fixed-order stabilizing controllers achieving robust performance, in the mixed sensitivity framework. The method is limited to single-input/single-output (SISO) systems but offers significant advantages over traditional loop gain shaping methods such as H and μ-synthesis. It can handle pure time delays in an exact manner and the weighting functions need not be rational. The technique translates frequency-domain weighting functions and stability constraints into the parameter space and thus gives the user more insights into the design than conventional methods. By virtue of producing the required parameter space region for the frequency response criteria, subsequent optimization of secondary objectives is possible. The controllers obtained are of lower order for comparable performance than those produced by current H and μ-synthesis techniques. The method is particularly well-suited to robust control problems where frequency-domain constraints emerge from the analysis of nonparametric uncertainties in the system and also to control problems where the frequency domain loop shaping is used to achieve time-domain specifications  相似文献   

7.
A robust tracking control design of robot systems including motor dynamics with parameter perturbation and external disturbance is proposed in this study via adaptive fuzzy cancellation technique. A minimax controller equipped with a fuzzy-based scheme is used to enhance the tracking performance in spite of system uncertainties and external disturbance. The design procedure is divided into three steps. At first, a linear nominal robotic control design is obtained via model reference tracking with desired eigenvalue assignment. Next, a fuzzy logic system is constructed and then tuned to eliminate the nonlinear uncertainties as possibly as it can to enhance the tracking robustness. Finally, a minimax control scheme is specified to optimally attenuate the worst-case effect of both the residue due to fuzzy cancellation and external disturbance to achieve a minimax tracking performance. In addition, an adaptive fuzzy-based dynamic game theory is introduced to solve the minimax tracking problem. The proposed method is appropriate for the robust tracking design of robotic systems with large parameter perturbation and external disturbance. A simulation example of a two-link robotic manipulator driven by DC motors is also given to demonstrate the effectiveness of proposed design method's tracking performance  相似文献   

8.
This study introduces a fuzzy control design method for nonlinear systems with a guaranteed H model reference tracking performance. First, the Takagi and Sugeno (TS) fuzzy model is employed to represent a nonlinear system. Next, based on the fuzzy model, a fuzzy observer-based fuzzy controller is developed to reduce the tracking error as small as possible for all bounded reference inputs. The advantage of proposed tracking control design is that only a simple fuzzy controller is used in our approach without feedback linearization technique and complicated adaptive scheme. By the proposed method, the fuzzy tracking control design problem is parameterized in terms of a linear matrix inequality problem (LMIP). The LMIP can be solved very efficiently using the convex optimization techniques. Simulation example is given to illustrate the design procedures and tracking performance of the proposed method  相似文献   

9.
The stabilization problem is considered in this correspondence for a nonlinear multiple time-delay large-scale system. First, the neural-network (NN) model is employed to approximate each subsystem. Then, a linear differential inclusion (LDI) state-space representation is established for the dynamics of each NN model. According to the LDI state-space representation, a robustness design of fuzzy control is proposed to overcome the effect of modeling errors between subsystems and NN models. Next, in terms of Lyapunov's direct method, a delay-dependent stability criterion is derived to guarantee the asymptotic stability of nonlinear multiple time-delay large-scale systems. Finally, based on this criterion and the decentralized control scheme, a set of fuzzy controllers is synthesized to stabilize the nonlinear multiple time-delay large-scale system.  相似文献   

10.
Robust identification with FIR models fails to be successful when the number of coefficients to be estimated becomes large, caused by lightly damped modes of the plant or poles very close to the unit circle. The paper presents a two-stage algorithm to obtain a low-order approximate model in frequency domain in a generalized orthonormal basis with guaranteed H error bound for deterministic linear time-invariant stable systems, the first stage being an L rational approximation and the second nonlinear step being an H rational approximation  相似文献   

11.
In this study, a model reference fuzzy tracking control design for nonlinear discrete-time systems with time-delay is introduced. First, the Takagi and Sugeno (TS) fuzzy model is employed to approximate a nonlinear discrete-time system with time-delay. Next, based on the fuzzy model, a fuzzy observer-based fuzzy controller is developed to reduce the tracking error as small as possible for all bounded reference inputs. The advantage of proposed tracking control design is that only a simple fuzzy observer-based controller is used in our approach without feedback linearization technique and complicated adaptive scheme. By the proposed method, the fuzzy tracking control design problem is parameterized in terms of a linear matrix inequality problem (LMIP). The LMIP can be efficiently solved using the convex optimization techniques. Simulation example is given to illustrate the design procedures and tracking performance of the proposed method.  相似文献   

12.
It is proposed here to use a robust tracking design based on adaptive fuzzy control technique to control a class of multi-input-multi-output (MIMO) nonlinear systems with time delayed uncertainty in which each uncertainty is assumed to be bounded by an unknown gain. This technique will overcome modeling inaccuracies, such as drag and friction losses, effect of time delayed uncertainty, as well as parameter uncertainties. The proposed control law is based on indirect adaptive fuzzy control. A fuzzy model is used to approximate the dynamics of the nonlinear MIMO system; then, two on-line estimation schemes are developed to overcome the nonlinearities and identify the gains of the delayed state uncertainties, simultaneously. The advantage of employing an adaptive fuzzy system is the use of linear analytical results instead of estimating nonlinear system functions with an online update law. The adaptive fuzzy scheme uses a Variable Structure (VS) scheme to resolve the system uncertainties, time delayed uncertainty and the external disturbances such that H tracking performance is achieved. The control laws are derived based on a Lyapunov criterion and the Riccati-inequality such that all states of the system are uniformly ultimately bounded (UUB). Therefore, the effect can be reduced to any prescribed level to achieve H tracking performance. A two-connected inverted pendulums system on carts and a two-degree-of-freedom mass-spring-damper system are used to validate the performance of the proposed fuzzy technique for the control of MIMO nonlinear systems.  相似文献   

13.
14.
This paper presents an interactive graphical method to determine sets of stabilizing controllers satisfying any combination of constraints on the sensitivity, complementary sensitivity, and input sensitivity transfer functions. The method is limited to single-input/single-output systems but offers significant advantages over current H methods. It can handle pure time delays in an exact manner. The weighting functions need not be rational. By virtue of producing the required parameter space region for the frequency response criteria, subsequent direct time-domain optimization is possible. The controllers obtained are of lower order for comparable performance than those produced by current H techniques. The method is particularly well suited to robust control problems, where frequency domain constraints emerge from the analysis of uncertainties in the system, and also to suboptimal problems, where the frequency-domain loop shaping is used to achieve time-domain specifications  相似文献   

15.
Adaptive fuzzy sliding mode control of nonlinear system   总被引:7,自引:0,他引:7  
In this paper, the fuzzy approximator and sliding mode control (SMC) scheme are considered. We propose two methods of adaptive SMC schemes that the fuzzy logic systems (approximators) are used to approximate the unknown system functions in designing the SMC of nonlinear system. In the first method, a fuzzy logic system is utilized to approximate the unknown function f of the nonlinear system xn= f(x, t)+b(x, t)u and the robust adaptive law is proposed to reduce the approximation errors between the true nonlinear functions and fuzzy approximators. In the second method, two fuzzy logic systems are utilized to approximate the f and b, respectively, and the control law, which is robust to approximation error is also designed. The stabilities of proposed control schemes are proved and these schemes are applied to an inverted pendulum system. The comparisons between the proposed control schemes are shown in simulations  相似文献   

16.
In general, due to the interactions among subsystems, it is difficult to design an H decentralized controller for nonlinear interconnected systems. The model reference tracking control problem of nonlinear interconnected systems is studied via H decentralized fuzzy control method. First, the nonlinear interconnected system is represented by an equivalent Takagi-Sugeno type fuzzy model. A state feedback decentralized fuzzy control scheme is developed to override the external disturbances such that the H∞ model reference tracking performance is achieved. Furthermore, the stability of the nonlinear interconnected systems is also guaranteed. If states are not all available, a decentralized fuzzy observer is proposed to estimate the states of each subsystem for decentralized control. Consequently, a fuzzy observer-based state feedback decentralized fuzzy controller is proposed to solve the H tracking control design problem for nonlinear interconnected systems. The problem of H decentralized fuzzy tracking control design for nonlinear interconnected systems is characterized in terms of solving an eigenvalue problem (EVP). The EVP can be solved very efficiently using convex optimization techniques. Finally, simulation examples are given to illustrate the tracking performance of the proposed methods  相似文献   

17.
In this paper, a direct fuzzy adaptive robust control approach is proposed for a class of SISO nonlinear systems with completely unknown virtual control directions, unknown nonlinearities, unmodeled dynamics and dynamic disturbances. In the backstepping recursive design, fuzzy logic systems are employed to approximate the combined nonlinear uncertainties, a dynamic signal and Nussbaum gain technique are introduced into the control scheme to dominate the dynamic uncertainties and solve the unknown signs of virtual control directions, respectively. It is proved that the proposed robust fuzzy adaptive scheme can guarantee the all signals in the closed-loop system are semi-globally uniformly ultimately bounded. The effectiveness of the proposed approach is illustrated via three examples.  相似文献   

18.
一类非线性离散系统模糊控制器的分析和设计   总被引:1,自引:0,他引:1  
针对一类非线性离散不确定系统,在系统状态不可测的情况下,以T-S模型描述不同状态空间的局部动态区域,并通过中心平均反模糊化、乘积推理、单点模糊化方法得到全局模糊系统模型.基于李亚普诺夫理论和线性矩阵不等式,设计了一种基于观测器的鲁棒控制器,并对离散状态下的此类系统进行了稳定分析.最后通过M ATLAB仿真,证明了该方法的有效性.  相似文献   

19.
The paper presents a new approach to output feedback robust control synthesis problems for hybrid dynamical systems. The hybrid system under consideration is a composite of a continuous plant and a discrete-event controller. An output feedback H-control problem on an infinite time interval is considered. The main results are given in terms of the existence of suitable solutions to a dynamic programming equation and a Riccati algebraic equation of the H-filtering type. These results show a connection between the theories of hybrid dynamical systems and robust and nonlinear control  相似文献   

20.
The design problem of proportional and proportional-plus-integral (PI) controllers for nonlinear systems is studied. First, the Takagi-Sugeno (T-S) fuzzy model with parameter uncertainties is used to approximate the nonlinear systems. Then a numerically tractable algorithm based on the technique of iterative linear matrix inequalities is developed to design a proportional (static output feedback) controller for the robust stabilization of the system in T-S fuzzy model. Next, we transform the problem of PI controller design to that of proportional controller design for an augmented system and thus bring the solution of the former problem into the configuration of the developed algorithm. Finally, the proposed method is applied to the design of robust stabilizing controllers for the excitation control of power systems. Simulation results show that the transient stability can be improved by using a fuzzy PI controller when large faults appear in the system, compared to the conventional PI controller designed by using linearization method around the steady state  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号