首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Wear》2006,260(1-2):25-29
Using a gas tungsten arc welding (GTAW) process, in situ synthesis TiC particles reinforced Fe-based alloy composite coating has been produced by preplaced FeCrBSi alloy, graphite and ferrotitanium powders. The microstructure and wear properties of the composite coatings were studied by means of scanning electron microscopy (SEM), X-ray diffractometer (XRD) and wear test. The effects of thickness of the pre-placed powder layer on the microstructure, hardness and wear resistance of the composite coatings were also investigated. The results indicated that TiC particles were produced by direct metallurgical reaction between ferrotitanium and graphite during the GTAW process. TiC particles with sizes in the range of 3–5 μm were dispersed in the matrix. The volume fraction of TiC particles and microhardness gradually increased from the bottom to the top of the composite coatings. The TiC-reinforced composite coatings enhance the hardness and wear resistance. The highest wear resistance of the composite coating with a 1.2 mm layer was obtained.  相似文献   

2.
《Wear》2006,260(7-8):705-710
Using a gas tungsten arc welding (GTAW) process, in situ synthesis TiC particles reinforced Fe-based alloy composite coating has been produced by pre-coated FeCrBSi alloy, graphite and ferrotitanium powders on the substrate. The microstructure and wear properties of the composite coatings were studied by means of scanning electron microscopy (SEM), X-ray diffractometer (XRD) and wear test. The effects of thickness of the pre-coated powder layer on the microstructure, hardness and wear resistance of the composite coatings were also investigated. The results indicated that TiC particles were produced by direct metallurgical reaction between ferrotitanium and graphite during the GTAW process. TiC particles with sizes in the range of 3–5 μm were dispersed in the matrix. The volume fraction of TiC particles and microhardness gradually increased from the bottom to the top of the composite coatings. The TiC-reinforced composite coatings enhance the hardness and wear resistance. The highest wear resistance of the composite coating with a 1.2 mm layer was obtained.  相似文献   

3.
The relationship between friction, wear, and transfer films of three metal carbide-reinforced amorphous carbon coatings (TiC/a:C, TiC/a:C–H, and WC/a:C–H), sometimes referred to as metal-doped diamond-like carbon coatings, has been investigated. Tribological tests were performed in an in situ tribometer with sapphire or steel hemispheres run against coated flats in dry or ambient air. The sliding contact interface was observed and recorded by optical microscopy during reciprocating sliding tests. The friction and wear behavior during run-in depended on the number of sliding cycles to form a stationary transfer film on the hemisphere. Stationary transfer films formed rapidly (within ten cycles) and the friction coefficient fell to 0.2 (ambient air) or 0.1 (dry air), except with sapphire against WC/a:C–H in dry air; with the latter, a stationary transfer film required nearly 100 cycles to form, during which the friction remained high and the wear rate was from 10 to 100 times higher than the other two coatings. For all coatings, three velocity accommodation modes (VAM) were observed from run-in to steady-state sliding and were correlated with the friction and wear behavior. The delayed adherence of the transfer film to sapphire from WC/a:C–H coatings in dry air is discussed in terms of equilibrium thermochemistry. Friction and wear behavior during run-in, therefore, depended on transfer film adherence to the hemisphere and the VAM between transfer films and the coating.  相似文献   

4.
Titanium (Ti) and Ti-based alloy wear performance is often poor unless coating or lubricants are used. An alternative is to use hard phase reinforcement. Cold spray is a relatively new method to deposit composite coatings, where here we report the deposition of a Ti–TiC coating and its sliding wear behavior. Mixtures of mechanically blended Ti–TiC with various TiC content were injected into a de Laval nozzle and sprayed onto substrates. Two composite coatings and a pure Ti coating are reported here, where the as-sprayed compositions of the composites were 13.8 and 33.4 vol% TiC. Reciprocating dry sliding wear was performed using a custom-built in situ tribometer. All tests were conducted with a sliding speed of 3 mm/s and at a normal load of 0.5 N. Using a transparent sapphire hemisphere of 6.25 mm as counterface, dynamic behavior of third bodies was directly observed. It was found that adhesive transfer of Ti was the primary wear mechanism for the Ti coating, with oxidative and abrasive wear also occurring for longer sliding cycles. The superior wear resistance of the composite coatings compared to Ti was related to dual function of TiC particles, where they reinforced the Ti matrix and facilitated the formation of a stable and protective tribofilms. The tribofilms contained carbonaceous material that provided easier shear and lower friction. The formation of these tribofilms was highly dependent on the TiC particles, which contained excess carbon compared to the equilibrium composition. Higher TiC content was more effective in quickly developing and sustaining the tribofilms.  相似文献   

5.
Tribocorrosion behaviour of heat-treated NiP and NiP–SiC composite coatings was investigated in a 0.6 M NaCl solution. The tribocorrosion tests were performed in a linear sliding tribometer with an electrochemical cell interface. It was analyzed the influence of SiC particles dispersion in the NiP matrix on current density developed, on coefficient of friction and on wear volume loss. The results showed that NiP–SiC composite coatings had a lower wear volume loss compared to NiP coatings. However, the incorporation of SiC particles into the metallic matrix affects the current density developed by the system during the tribocorrosion test. It was verified that not only the volume of co-deposited particles (SiC vol.%) but also the number of SiC particles per coating area unit (and consequently the SiC particles size) have made influence on the tribocorrosion behaviour of NiP–SiC composite coatings.  相似文献   

6.
阮鸿雁  沈琪  宋振达 《中国机械工程》2013,24(16):2253-2256
采用铸造反应合成技术在灰铸铁表面原位合成TiC/Al3Ti复合涂层材料,对复合涂层的显微组织、硬度和耐磨性进行了研究。结果表明:Al-Ti-C体系完全反应后可制备出纯净的TiC/Al3Ti表面复合涂层材料,该表面复合材料组织致密,并随着涂层中TiC含量的增加,材料的硬度有所提高,表面复合涂层的硬度明显高于铁基体的硬度,磨损性能也要优于铁基体,明显改善了铸铁的表面硬度和摩擦性能。    相似文献   

7.
Thick composite coatings of carbides on a metal matrix are ideal for use in components that are subjected to severe abrasive wear. It is a metal matrix composite (MMC) that is reinforced by an appropriate ceramic phase, a solid lubricant coating to reduce friction and to protect the opposing surface. This study tested the wear behavior of a carbon steel surface after cladding by a gas tungsten arc welding (GTAW) method to enhance wear resistance. The microstructures, chemical compositions, and wear characteristics of the cladded surfaces were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The coating was uniform, continuous, and almost defect-free, and particles were evenly distributed throughout the cladding layer. The results of wear tests indicate that the friction coefficient of the TiC coating is lower than that of AISI 1020 carbon steel. Thus, the wear depth of the TiC coating is only one tenth of that exhibited by the AISI 1020 carbon steel. The experiments confirm that the cladding surfaces of TiC particles reduce the wear rate and friction.  相似文献   

8.
A Fe-based composite coating reinforced by multiple TiB2–TiC–Al2O3 ceramic particles was developed by gas tungsten arc welding (GTAW) melting process. Mixture of aluminum (Al), boron carbide (B4C), and titanium dioxide (TiO2) powders was used as precursors, and as a consequence TiB2–TiC–Al2O3 multiple ceramic particles were in situ synthesized during GTAW melting process. Microstructural investigations showed that TiB2 particles exhibit a blocky morphology, TiC particles are of flower-like shape, and the Al2O3 particles exist as small black dots and located in the core of reinforced particles. The hardness and wear resistance of the coatings increased drastically in comparison with that of the substrate.  相似文献   

9.
采用激光熔覆技术在45钢样品表面制备了Ni/TiC复合涂层,利用光学显微镜、SEM,EDS,XRD、显微镜硬度计及摩擦磨损试验机等检测设备研究了Ni/TiC复合涂层的组织和性能。试验结果表明:Ni/TiC复合涂层没有出现裂纹、孔洞等缺陷,涂层与基体之间具有良好的冶金结合,涂层显微硬度沿层深皆呈明显的阶梯状分布,最外表面的熔覆层硬度最高,约为800 HV;熔覆试样的比磨损率比基体试样的比磨损率下降了86.5%,表明Ni/TiC复合涂层具有较好的耐磨性能。  相似文献   

10.
The present article considers an experimental study of tribological performance of electroless Ni–P coatings and optimization of tribological test parameters based on the Taguchi method coupled with grey relational analysis. A grey relational grade obtained from the grey relational analysis is used as performance index to study the behaviour of electroless Ni–P coating with respect to friction and wear characteristics. Experiments are carried out by utilizing the combination of tribological test parameters based on L27 Taguchi orthogonal design with three test parameters, viz., load, speed and time. It is observed that all the three test parameters have significant contribution in controlling the friction and wear behaviour of electroless Ni–P coating. In addition, the interaction of load and time has significant influence on tribological performance. The surface morphology, composition and wear mechanism of the coatings are studied with the help of scanning electron microscopy, X-ray diffraction analysis and energy dispersed X-ray analysis.  相似文献   

11.
The effect of two different surface modification methods on the wear life of the coating of magnetic tape drive heads has been studied. In this research, the heads were coated with 10 nm tetrahedral amorphous carbon (ta-C) film using filtered cathodic vacuum arc (FCVA) technique. The surface of the heads was pretreated by bombarding with energetic carbon ions or by developing a Si–Al–C composite interlayer before deposition of the coating. The coated heads were tested at a real head/tape interface of a tape drive. Surface characterization and tribological behavior of the head coatings with and without surface modification has been studied by transmission electron microscopy (TEM), Auger electron spectroscopy (AES), and scanning electron microscopy (SEM). The results reveal that the ta-C coating without any surface modification is not durable and the coating fails due to delamination. Pre-treating the head surface with energetic carbon ions improves the durability of the coating, especially on the head read/write elements; however, the coating of the head ceramic substrate is still partially delaminated. The application of a Si–Al–C composite interlayer is shown to be able to solve the delamination problem effectively and increase the wear life of the coating up to six times in comparison with the sample pretreated with carbon ions. The formation of strong chemical bonds between the head surface and the overcoat is found to be an important factor in improving the durability of the ta-C head coating.  相似文献   

12.
J. Tan  T. Yu  B. Xu  Q. Yao 《Tribology Letters》2006,21(2):107-111
This paper investigates the microstructure and wear resistance of nickel–carbon nanotube (CNT) composite coating deposited by brush plating technique. The Ni/CNT coating deposited with a pulse current source has less porosity, higher hardness and higher wear resistance than that with a DC source. CNTs greatly improve the coating performance. The wear mechanism is mainly the smearing of the Ni/CNTs coatings, instead of the fracture for the Ni coatings.  相似文献   

13.
The tribological behaviour of Fe–28Al–5Cr and its composites containing 15, 25 and 50 wt% TiC (corresponding to 19.3, 31.2 and 57.6 vol%), produced by hot-pressing process, was investigated under liquid paraffine lubrication against an AISI 52100 steel ball in ambient environment at varied applied loads and sliding speeds. It was found that the wear resistance increased and friction coefficient decreased with increasing of TiC content. The coefficients of friction are in the range of 0.09–0.14 at the given testing conditions. The wear rates of all the materials except the 50% composite are on the order of 10−6–10−5 mm3 m−1, the wear rate for the 50% composite is too low to quantify under the two sliding conditions, (50 N, 0.04 m/s) and (100 N, 0.02 m/s). The wear rates of all the materials increase as applied load increases and the increasing extent diminishes with the increase of TiC content, but first increase slightly and then nearly remains steadiness with increasing sliding speed. The 50 wt% composite has wear resistance about 7–20 times better than pure Fe–28Al–5Cr at different sliding parameters. The enhanced wear resistance by TiC addition is attributed to the high hardness of the composites, as well as support of the oil lubrication film/layer by the hard TiC phase. The worn surfaces of all the materials are analyzed by a scanning electron microscope. The dominant wear mechanism of the Fe–28Al–5Cr and 15% composite is grooving and flaking-off, but those of the 25 and 50% composites are mainly shallow grooving.  相似文献   

14.
The tribological properties of part surfaces, namely their wear resistance and friction properties, are decisive in many cases for their proper function. To improve surface properties, it is possible to create hard, wear-resistant coatings by thermal spray technologies. With these versatile coating preparation technologies, part lifetime, reliability, and safety can be improved. In this study, the tribological properties of the HVOF-sprayed coatings WC–17%Co, WC–10%Co4%Cr, WC–15% NiMoCrFeCo, Cr3C2–25%NiCr, (Ti,Mo)(C,N)–37%NiCo, NiCrSiB, and AISI 316L and the plasma-sprayed Cr2O3 coating were compared with the properties of electrolytic hard chrome and surface-hardened steel. Four different wear behavior tests were performed; the abrasive wear performance of the coatings was assessed using a dry sand/rubber wheel test according to ASTM G-65 and a wet slurry abrasion test according to ASTM G-75, the sliding wear behavior was evaluated by pin-on-disk testing according to ASTM G-99, and the erosion wear resistance was measured for three impact angles. In all tests, the HVOF-sprayed hardmetal coatings exhibited superior properties and can be recommended as a replacement for traditional surface treatments. Due to its tendency to exhibit brittle cracking, the plasma-sprayed ceramic coating Cr2O3 can only be recommended for purely abrasive wear conditions. The tested HVOF-sprayed metallic coatings, NiCrSiB and AISI 316L, did not have sufficient wear resistance compared with that of traditional surface treatment and should not be used under more demanding conditions. Based on the obtained data, the application possibilities and limitations of the reported coatings were determined.  相似文献   

15.
In situ synthesized VC carbide particles reinforced Fe-based composite coating was fabricated by laser cladding on steel substrate using ferrovanadium (Fe–V) alloy and graphite as the precursor powders. The phase structure and microstructure of the clad layer were investigated by means of X-ray diffraction analysis, scanning electron microscopy, and electron probe microanalysis. Results showed that uniformly distributed VC particles with the radial dendrites shape could be synthesized by the in situ reaction. The hardness and wear properties of the clad coatings were greatly improved due to the presence of VC particles in comparison with the substrate.  相似文献   

16.
In order to overcome the disadvantages generated by the loosened nanoparticle agglomerates dispersed in polymer composite coatings, nano-TiO2 particles are modified using trifluoracetic acid. The friction and wear properties of the phenolic coatings filled with different surface treated nano-TiO2, sliding against AISI-C-52100 steel ring under dry sliding, were investigated on a MHK-500 wear tester. Owing to the effective improvement of their dispersibility in the phenolic coating, compared with the cases of untreated nano-TiO2, the employment of modified nano-TiO2 provided the phenolic coating with much better tribological performance. Worn surfaces of the untreated nano-TiO2 or modified nano-TiO2 filled phenolic coating and transfer films formed on the surface of the counterpart ring sliding against the composite coating were respectively investigated by SEM and optical microscope (OM), from which it is assumed that the optimal content of TiO2 or TF-TiO2 is able to enhance the adhesion of the transfer films to the surface of counterpart ring. As a result, the wear resistance of the phenolic composite coating filled with modified nano-TiO2 was significantly enhanced, especially at extreme wear conditions, i.e. high contact pressures.  相似文献   

17.
打壳锤头等离子堆焊镍基涂层组织和性能   总被引:4,自引:0,他引:4  
采用等离子堆焊技术在打壳锤头基体Q235钢表面进行堆焊,堆焊材料选用分别含有50%WC、40%WC和30%WC+TiC的复合镍基粉末。借助金相显微镜、扫描电子显微镜、显微硬度仪、摩擦磨损试验仪等仪器对所得各堆焊层的显微组织、化学成分、显微硬度、耐磨性和耐蚀性进行分析。试验结果表明,三种合金堆焊层显微组织均为γ-Ni固溶体和弥散分布的不同形态的硬质化合物相,如WC,(Ti,V)C等。三种合金堆焊层与基体界面处冶金结合良好,堆焊层稀释率低,且与基体Q235钢相比,耐电解腐蚀性显著提高。含有30%WC+TiC的镍基合金堆焊层与含有50%WC和40%WC的镍基合金堆焊层相比,具有更高的耐磨性和抗热腐蚀性。因而含有30%WC+TiC的镍基合金堆焊层综合性能最优,能够大幅度延长打壳锤头使用寿命,具有广泛的应用前景。  相似文献   

18.
复合尼龙涂层的腐蚀—冲蚀磨损特性   总被引:1,自引:0,他引:1  
本文对尼龙涂层及尼龙+5%Al_2O_3陶瓷颗粒和尼龙+5%SiC晶须复合涂层进行了腐蚀—浆体冲蚀磨损试验研究。研究了砂浆的pH值,冲击速度等参数对涂层的腐蚀冲蚀磨损的影响,对涂层表面的组织结构和形貌进行了观察分析,探讨了复合尼龙涂层的腐蚀冲蚀磨损机理,建立了V_e-pH-U腐蚀—冲蚀磨损三维图。  相似文献   

19.
Adaptive nanocomposite coatings provide low friction in broad ranges of environmental conditions through the formation of lubricious surfaces resulting from interactions with the ambient atmosphere. Designing adaptive coatings to withstand wear through repeated thermal cycles is particularly difficult since most demonstrate irreversible changes in surface composition and morphology. This permanent change in the condition of the surface limits the utility of adaptive coatings in applications where thermal cycling is expected. Moreover, some lubrication mechanisms occur over the entire coating surface in addition to the area experiencing wear, which results in a significant waste of lubricant. In an effort to increase the wear lifetime and move toward thermal cycling capabilities of solid adaptive lubricants, a multilayer coating architecture incorporating two layers of adaptive YSZ–Ag–Mo nanocomposite lubricant separated by a TiN diffusion barrier was produced. The multilayer coating lasted over five times longer than a monolithic adaptive coating of identical composition and total thickness for dry sliding tests at 500 °C in air. Analysis of the structure and composition of the films after heating suggests directed, lateral diffusion of lubricant beneath the diffusion barrier toward the wear scar as a mechanism for the increased wear life of the multilayer coating.  相似文献   

20.
It is shown that fullerene black interacts with the steel 45 surface and forms a nanocomposite coating including orthorhombic iron carbide Fe3C with crystallites sized 100–150 nm and dispersed spots of fullerene black with particles sized 40–50 nm. Tribotests show the coefficient of friction of the composite coating to be three-four times lower and the wear resistance about two times higher than these parameters for original annealed steel 45. It is proved that in friction, frictional transfer occurs of hard high-disperse wear products of the coating carbide base and fullerene black to the counterbody, which encourages the decrease in the friction of the pair with one of its elements coated with Fe3C-fullerene black. The causes of the improved tribological behavior of the carbide coating are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号