首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphological, viscoelastic, hydration, pasting, and thermal properties of starches separated from 10 different rice cultivars were investigated. Upon gelatinization, the G′ values of the rice starch pastes ranged from 37.4 to 2057 Pa at 25 °C, and remarkably, the magnitude depended on the starch varieties. The rheological behavior during gelatinization upon heating brought out differences in onset in G′ and degree of steepness. The cultivar with high amylose content (Goami) showed the lowest critical strain (γc), whereas the cultivars with low amylose content (Boseokchal and Shinseonchal) possessed the highest γc. The amylose content in rice starches affected their pasting properties; the sample possessing the highest amylose content showed the highest final viscosity and setback value, whereas waxy starch samples displayed low final viscosity and setback value. The onset gelatinization temperatures of the starches from 10 rice cultivars ranged between 57.9 and 64.4 °C. The amylose content was fairly correlated to hydration and pasting properties of rice starches but did not correlate well with viscoelastic and thermal characteristics. The combined analysis of hydration, pasting, viscoelastic, and thermal data of the rice starches is useful in fully understanding their behavior and in addressing the processability for food applications.  相似文献   

2.
The restriction of gelatinization of the legume starches, which were isolated from Phaseolus vulgaris species, was studied in terms of enzymatic digestion, light microscopic observation, measurements of X-ray diffraction, viscosity, swelling power and solubility, when the legume starch slurries were heated in step by step manner at a given rate from moderate temperature up to 90°C. Three legume starches tested showed a remarkable restriction of gelatinization, although these phenomena were not always observed in the legume starch slurry alone. Such restriction of gelatinization, however, was not observed in the waxy starch or starches which contain few amylose fractions. The formation of starch-lipid complex was ruled out as a cause because the defat treatment did not reduce the restricted gelatinization of legume starch and high amylose corn starch. From the data presented, it was suggested that physical modification of starch slurry containing amylose fraction induced the hysteretic, mutual alteration of the starch macromolecules.  相似文献   

3.
Starches from glutinous rice (1.4% amylose), Jasmine rice (15.0% amylose) and Chiang rice (20.2% amylose) were exposed to heat‐moisture treatment (HMT) at 100 °C for 16 h and at different moisture levels (18, 21, 24 and 27%). The effect of heat‐moisture treatment on structural and thermal properties of these three rice starches was investigated. The HMT did not change the size, shape and surface characteristics of rice starch granules. The A‐type crystalline pattern of rice starches remained unchanged after HMT. The relative crystallinity (RC) and the ratio of short‐range molecular order to amorphous (RSA) of heat‐moisture treated glutinous and Jasmine rice starches decreased with increasing moisture level of the treatments. In contrast, the RC of the treated Chiang rice starch remained practically unchanged. A peak of crystalline V‐amylose‐lipid complexes was clearly presented in all treated Chiang rice starches. The peak became progressively stronger with increasing moisture level of the treatment. Differential scanning calorimetry (DSC) of all treated rice starches showed a shift of the gelatinization temperature to higher values. Increasing moisture level of the treatments increased the onset gelatinization temperature (To) but decreased the gelatinization enthalpy (ΔH) of rice starches. A broad gelatinization temperature range (TcTo) with a biphasic endotherm was found for all treated Chiang rice starches and Jasmine rice starch after HMT27 (HMT at 27% moisture level). Additionally the (TcTo) of treated Chiang rice starches increased linearly with increasing moisture level of the treatments.  相似文献   

4.
Interaction of wheat and rice starches with yellow mustard mucilage   总被引:1,自引:0,他引:1  
The effect of yellow mustard mucilage (YMM) on gelatinization and retrogradation of wheat and rice starches were studied. Considerable interactions were observed between YMM and wheat and rice starches which were accompanied by a marked increase in viscosity. DSC studies showed that the presence of YMM did not affect peak gelatinization temperature (Tp) of wheat and rice starches, but slightly increased melting enthalpy (ΔH) and the phase transition temperature range (TcT0). Addition of YMM markedly changed wheat and rice starch gel textures by increasing hardness, adhesiveness, chewiness and springiness. The addition of YMM–locust bean gum (LBG) mixture (9:1) similarly increased the viscosity of wheat and rice starches but decreased gel hardness. The swelling power as well as solubilized starch and amylose were decreased for both starches in the presence of YMM. Syneresis in wheat and rice starches was also decreased by the presence of YMM.  相似文献   

5.
Native wheat, oat, potato and lentil starches were annealed at various starch/water ratios at 50C for time intervals ranging from 0.5 to 72 h. Annealing did not change granule size and shape. Oat starch granules were less compactly packed after annealing. X-ray diffraction patterns remained unchanged and X-ray intensities changed only marginally in all starches. The swelling factor (SF), amylose leaching (AML) and the gelatinization temperature range (GTR) decreased on annealing. The extent of decrease in SF and AML followed the order: lentil > wheat > potato > oat, while the corresponding order for GTR was: wheat > lentil > oat > potato. The gelatinization transition temperatures (GTT) and enthalpy (ΔH) increased on annealing. However, the increases in GTT and ΔH did not begin concurrently during the time course of annealing. Increases in ΔH were slower and were evident only after 1, 2, 6 and 48 h, respectively, in lentil, potato, oat and wheat starches. The extent and rate of increase in GTT and ΔH followed the order: potato > lentil > wheat > oat. The magnitude of changes in GTT and ΔH increased with increase in annealing moisture content. The susceptibility of oat starch to enzyme and acid hydrolysis increased on annealing. However, decreases occurred in the other starches (lentil > wheat > potato). Thermal and shear stability of starch granules increased on annealing (potato > lentil > wheat > oat). The results showed that the above changes in physicochemical properties were due to increased interaction between starch components during annealing.  相似文献   

6.
Several commercial starch noodles made from legume, tuber, geshu (kudzu and sweet potato) and fernery starches were used to study the characteristics of starch in starch noodles and their effect on eating quality of starch noodles. Scanning electron microscopy observation found that the special inner structure of starch noodles was composed of some broken starch granules and some gel-like substances. Tuber and legume starches had the highest and lowest solubility, swelling power, swelling factor, setback, breakdown, peak viscosity, and final viscosity, respectively. Legume and tuber starches had the highest and lowest gelatinization temperature, respectively. Tuber and geshu starches had the highest amylose leaching rate, while legume starches owned the lowest value (p < 0.05). Tuber starches had the highest conclusion temperature of gelatinization (151.12~158.86°C). Fernery starches had the lowest value of retrogradation enthalpy (967.33 J/g dry starch). Legume starch noodles had the lowest broken rate (0.00~1.67%), swelling ratio (332.64~343.57%), and cooking loss (2.40~2.74%), and the highest hardness (87.47~93.29 g/mm2), shear deformation (0.49~0.52), and elasticity (0.58~0.62), However, tuber and fernery starch noodles did the opposite, tuber and legume starch noodles had the highest and lowest cohesiveness, respectively. All the above cooking and starch properties test results of starch noodles demonstrated that, compared with others, legume starch noodles are relatively well in eating quality. The correlation analysis showed that the cooking and physical quality of starch noodles could be perfected significantly by improving the swelling and pasting properties for starch of starch noodles, while thermal properties had no obvious influence on them.  相似文献   

7.
The effect of heat-moisture treatment (30% moisture, 100C, 16 h) and annealing (75 % moisture, 50C, 72 h) on the flow behavior of gelatinized starch pastes from wheat, oat, lentil and potato starches were studied at a concentration of 6% starch with a cone and plate viscometer (Wells Brookfield RVTDV II CP 200). The power law rheological model (σ=Kγn) was used to describe the flow behavior of the above starch pastes. All native starches exhibited a non-Newtonian shear thinning behavior. A thixotropic loop was evident only in oat starches and native potato starch. Among native starches, the magnitude of the shear thinning index (n) followed the order: oat > wheat > lentil > potato, while the corresponding order for the consistency index (K) was: potato > lentil > wheat > oat. Heat-moisture treatment decreased the K value of all starches. On annealing, K decreased in wheat and lentil starches, but increased in potato and oat starches. Heat-moisture treatment and annealing increased the n value of wheat, lentil and potato starches, but decreased that of oat starch. In all starches, the modification to the flow behavior was more marked on heat-moisture treatment than on annealing.  相似文献   

8.
《LWT》2005,38(1):59-65
Gelatinization and retrogradation characteristics of 6-year-old Korean ginseng starch with different grades were investigated using differential scanning calorimetry (DSC). The 1st and 3rd grade ginseng starches showed typical biphasic DSC endotherm while 2nd grade ginseng starch revealed monophasic DSC endotherm with relatively narrow transition temperature. Although Avrami exponents (n) of all ginseng starches were close to 1.0 (i.e., retrogradation of all ginseng starches at a single temperature have an instantaneous nucleation followed by rod-like growth of crystals), 1st and 3rd grade ginseng starches showed higher degree of retrogradation and faster retrogradation rate than 2nd grade ginseng starch. This indicates that 2nd grade ginseng starch has different gelatinization and retrogradation characteristics compare to 1st and 3rd grade ginseng starches, which may influence the occurrence of inner white, the main defect of red ginseng.  相似文献   

9.
The effects of sucrose and sodium chloride on the gelatinization and retrogradation of native and hydroxypropylated crosslinked tapioca starches were investigated by using Differential Scanning Calorimetry (DSC). Hydroxypropylated crosslinked tapioca starches showed low gelatinization temperature and enthalpy compared to the native tapioca starch. Sucrose and sodium chloride increased the gelatinization temperatures of all starch samples. The enthalpy to melt retrograded amylopectin of hydroxypropylated crosslinked tapioca starches were low, compared to that of the native starch. Sucrose did not have much effect on retrogradation of the starch, while sodium chloride decreased retrogradation of all starch samples.  相似文献   

10.
Corn starch and starches separated from different potato cultivars were acetylated to evaluate the effect of plant source on the physicochemical, morphological, thermal, rheological, textural and retrogradation properties of the starches. Corn starch showed a lower degree of acetylation than potato starches under similar experimental conditions. The degree of acetylation for different potato starches also differed significantly. Morphological examination revealed that the granules of acetylated Kufri Chandermukhi and Kufri Sindhuri starches tended to appear as fused and less smooth than native starch granules. Acetylation of corn and potato starches decreased the transition temperatures and enthalpy of gelatinization and increased swelling power and light transmittance. However, the change in these was greater in the potato starches with higher percentage of small sized granules. Acetylated starches showed higher peak G', G'' and lower tan δ than their counterpart native starches during heating. Among the starches from different cultivars, the change in the rheological parameters after acetylation differed to a significant extent. The retrogradation was observed to be negligible in the acetylated cooked starch pastes. Results implied that the change in functional properties of starches with acetylation depends on source and granule morphology of native starch.  相似文献   

11.
Two banana starches were studied to analyze the effect of the acid hydrolysis on their molecular structure, and the impact in their physicochemical features. The native banana starches exhibit differences in the amylose content, molar mass, gelatinization parameters, X-ray diffraction pattern, and pasting profile. These results suggested that different acid hydrolysis mechanisms may be operative in these two starches. The kinetic hydrolysis is different in both banana starches that are related to the crystalline packing of the starch molecules. This was confirmed by the amylose content, the X-ray diffraction pattern, and the thermal study in the acid hydrolyzed starches at different times. The acid-treated Roatan starch showed higher retrogradation than Macho starch, a phenomenon that increases in the sample hydrolyzed for the longer time. This pattern is related to the amylose/amylopectin ratio, the reduction in the molar mass and the gyration radius. The acid hydrolysis of banana starches, although they have some similarities, they are different.  相似文献   

12.
ABSTRACT: This review article highlights the thermal behaviors of selected starches that were studied using differential scanning calorimetery (DSC) with data shown in various research publications. The starches of sago, potato, sweet potato, cassava, yam, and corn are included in this overview. Our examinations indicate that thermal properties are highly affected by the type of starch, its amylose/amylopectin content, and the presence of other food ingredients such as sugar, sodium chloride, water, milk, hydrocolloids, and meat. When the heating temperatures of the starches were increased, the DSC measurements also showed an increase in the temperatures of the gelatinization (onset [To], peak [Tp], and conclusion [Tc]). This may be attributed to the differences in the degree of crystallinity of the starch, which provides structural stability and makes the granule more resistant to gelatinization.  相似文献   

13.
Starches from unripe fruits (mango, banana, and plantain) were acid modified to form different degrees of lintners with the objective to increase the slowly digestible starch (SDS) and RS contents. Molecular, thermal, and structural characteristics were evaluated. Mango starch showed higher susceptibility to acid hydrolysis than banana and plantain starches. The peak temperature of gelatinization (Tp) showed a decrease at low hydrolysis percentage, but at higher hydrolysis percentage the Tp increased. However, the enthalpy of gelatinization presented an increase with the hydrolysis percentage, but was not higher than its native counterpart. In general, the peak temperature and enthalpy of retrogradation increased with hydrolysis percentage due to formation of linear chains during the modification that promoted retrogradation. High performance size exclusion chromatography (HPSEC) analysis demonstrated the presence of multiple‐branches (DP = 96–109), single branched (DP = 28–31), and linear (DP = 16–18) polymers in the fruit starch lintners. The acid treatment (lintnerization) of mango starch had no effect on the SDS fraction, while for plantain and banana starches, the SDS content increased (6.14–35.4%) at low hydrolysis percentage (0–50%) followed by a decrease at higher days of hydrolysis. At higher hydrolysis percentage (70–80%) the RS content increased for the three fruit lintners.  相似文献   

14.
Cassava starch was cross‐linked with epichlorohydrin (EPI) at 45°C for 2 h in three different media which include water, water in the presence of a phase transfer catalyst (PTC) and N,N‐dimethylformamide (DMF). The products were characterized by determining their physicochemical, thermal and retrogradation properties. In aqueous medium, the use of a PTC, tetrabutylammonium bromide (TBAB) produced derivatives with higher degree of cross‐linking than those prepared without the use of the catalyst. The degree of cross‐linking was found to be higher using the same concentration of EPI when the reaction was carried out in DMF. At low levels of cross‐linking, the peak viscosity of the cross‐linked starches increased in comparison to that of the native starch. With increasing degree of cross‐linking, the peak viscosity showed a significant reduction. The swelling volume, solubility and light transmittance of the starch pastes were lower for the modified starches. The cross‐linked starches showed slightly reduced values for the gelatinization temperatures, Tonset, Tpeak and Tend. The enthalpy of gelatinization of the modified starches increased with increase in the degree of cross‐linking. The modified starches exhibited higher water‐binding capacities (WBC) than the native starch; but with increase in the degree of cross‐linking, there was a gradual decrease in WBC. The in vitro alpha amylase digestibility of the modified starches decreased gradually with increase in the level of cross‐linking.  相似文献   

15.
The physicochemical properties of acid‐treated rice starches were investigated. Rice starches were treated with hydrochloric acid at different acid concentrations and hydrolysis times. The pasting properties were tested using a Rapid Visco Analyser, and gelatinization and retrogradation properties using a differential scanning calorimeter. The results showed that acid concentration had a more pronounced effect on degree of polymerization (DP) and viscosity than hydrolysis time. The onset, peak and conclusion temperatures of gelatinization were increased significantly with hydrolysis time, while the gelatinization enthalpy (ΔHG) was decreased. In addition, there was an increase in the gelatinization temperature range with longer hydrolysis time. After storing gelatinized starches at 4°C for 7 days, the transition temperature and enthalpy (ΔHR) to melt retrograded amylopectin did not change significantly. Additionally, the temperature and enthalpy transition for melting amylose‐lipid complex of all gelatinized and retrograded starches were in the same range.  相似文献   

16.
Starch structural mutants showing abnormal endosperm characteristics have been used for investigating the effects of the mutation on structure and physicochemical properties of starches. Inbred lines of barley cultivars ‘Shikoku Hadaka 97’ and ‘Glacier AC38’ were used to investigate the impact of amo1 and waxy genes on starch properties. The amo1 type starch had high apparent amylose content and low starch content. The amo1+waxy type starch contained very little amylose. The content of long chains of amylopectin as detected with high‐performance size‐exclusion chromatography (HPSEC) was decreased, and that of amylopectin chains with the degree of polymerization (DP) of 12‐36 was increased in amo1 and amo1+waxy type starches. The amo1 and amo1+waxy type starches exhibited high gelatinization temperatures and low gelatinization enthalpies.  相似文献   

17.
Starch samples separated from oat were modified with two different levels of POCl3 (0.5 and 1.0 g kg−1) as a cross-linking agent and two different levels of acetic anhydride (6% and 8% (w/w)) for acetylation. Swelling factor, thermal properties and retrogradation measurements were evaluated to characterise the influence of phosphorylation and acetylation on oat starch. Cross-linking decreased the swelling factor and did not improve gelatinization temperature while it increased synaeresis in comparison with native starch. Acetylation increased swelling factor but reduced gelatinization temperature and synaeresis of oat starch.  相似文献   

18.
The apparent viscosity profile of starches during gelatinization varies with different amylose content. This study focused on the influence of amylose content on the kinetic parameters of a starch viscosity model for corn starches. The five parameters were: gelatinization rate constant (kg), gelatinization activation energy (Eg), relative increase in apparent viscosity during gelatinization (Aα), relative decrease in apparent viscosity during shearing (B), and viscous activation energy (Ev). The parameters were estimated at different amylose content using both ordinary least squares nonlinear regression and the sequential method. The mixer viscometry approach was used to measure apparent viscosity. The first part of this paper presents parameter estimation results for waxy corn starch. The model was validated by using the parameters to predict viscosity for the same starch in a different measuring system, i.e., the RVA. The second part of this paper presents the estimated parameters for corn starch blends at different amylose content. The following parameters were significantly affected by amylose content: kg and Eg both decreased with amylose content by an power-law relationship. Activation energy of gelatinization ranged from 121 to 1169 kJ/mol. The other parameters Aα, B, and Ev were not significantly influenced by amylose content. In summary, the gelatinization parameters kg and Eg dramatically decreased as amylose increased from 3% to 35% (waxy corn starch blends).  相似文献   

19.
Fermented and nonfermented cassava (Manihot utilissima Pohl) starches from Colombia and Brazil were studied. The DSC thermograms obtained at high water contents (water:starch 3.1 to 4.2) showed that starch fermentation decreased both the temperature of gelatinization (Tmax) and that of final gelatinization. No significant differences were found between the enthalpies of gelatinization of fermented and non-fermented starches. Differences in ΔH corresponding to the first endothermic transition of fermented and nonfermented samples were detected at low water contents (water:starch 1.0 to 0.4). Pastes obtained with nonfermented starches were more viscous than those corresponding to fermented samples. This behavior could be related to the greater solubility of the fermented samples, leading to a smaller size of hydrated granules.  相似文献   

20.
High amylose corn starch (HACS) and potato starch were hydrolyzed by pancreatic α‐amylase in vitro. Residues after hydrolysis were collected and characterized for their physicochemical properties and molecular structure. Compared with raw starches, residues had lower apparent amylose contents and higher resistant starch contents. The gelatinization enthalpy of residues from HACS increased while enthalpy of residues from potato starch decreased from 15.4 to 11.3 J/g. Peak viscosity and breakdown values of the residues from potato starch were markedly decreased but final viscosity values did not show much change. Chain length distribution of debranched amylopectin from the residues indicated that the relative portion of short chain in the residue decreased for both starches. More molecules with intermediate chain length (DP 16—31) were found in residue after 48‐h hydrolysis of potato starch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号