首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对电镀废水处理难度大、氨氮浓度高等问题,为了验证次氯酸钠对电镀废水中氨氮的处理效果,采用次氯酸钠氧化法对氨氮浓度为100 mg/L的模拟电镀废水进行预处理,研究了次氯酸钠投加量、反应时间、初始p H值、反应温度等因素对氨氮去除效果的影响。结果表明:常温条件下,当m(Cl2)∶m(N)=5∶1,反应时间为5 min,初始pH值在6~7之间,次氯酸钠对模拟电镀废水中氨氮的处理效果好,氨氮去除率高达85.5%,剩余氨氮浓度符合GB 21900-2008《电镀污染物排放标准》表2中的氨氮排放标准,说明了采用次氯酸钠氧化法去除电镀废水中的氨氮是可行的,同时也证明了十二烷基苯磺酸钠的存在会影响次氯酸钠的稳定性。  相似文献   

2.
[目的]次氯酸钠具有强氧化性,被广泛应用于电镀、印染、石油化工等领域的废水处理。[方法]采用次氯酸钠氧化法处理电镀废水,通过静态试验探究次氯酸钠的投加量、反应时间、初始pH等因素对电镀废水中总镍、氨氮、总磷等污染物处理效果的影响。对比了在较优条件下分别采用机械搅拌和曝气搅拌时废水的处理效果。[结果]较佳的工艺条件为:10%(质量分数)次氯酸钠溶液投加量100 mL/L,初始pH为6.0,反应时间90 min。在该条件下,废水中总镍、总磷和氨氮的去除率分别达到99.97%、99.94%和99.41%,其出水浓度均满足《电镀污染物排放标准》(GB 21900–2008)中“表3”的要求。电镀废水处理过程采用机械搅拌和曝气搅拌均可,但采用机械搅拌的处理效果更佳。[结论]采用次氯酸钠氧化法可有效去除含镍电镀废水中镍、磷和氨氮,使废水达标排放。  相似文献   

3.
尚鸿艳  曹兆娟  尚快乐 《山东化工》2022,(18):213-215+219
采用电化学氧化协同吹脱法对苯基胍废水进行处理,考查其对NH3-N的氧化脱除效果。实验结果表明,废水初始氨氮浓度、pH值、反应电流、吹脱气液比、反应/吹脱时间均对废水的NH3-N去除率产生影响。苯基胍废水去除氨氮的最佳处理条件为:氨氮初始浓度3 500 mg/L、初始pH值为10,反应电流3 A,吹脱气液体积比3 000∶1,反应时间40 min。氨氮去除率最高达91%。  相似文献   

4.
采用曝气吹脱-MBR-臭氧氧化联用处理技术,对粘胶纤维生产中产生的轻度污染废水进行处理。试验结果表明:在曝气吹脱时间控制在40min,MBR处理水量10~20L/h,臭氧氧化停留时间30min的条件下,废水经处理后的出水COD去除率为90%以上、浓度为2.5mg/L,Zn~(2+)的去除率为45%以上、浓度为0.6mg/L,SS和浊度的去除率均为100%。  相似文献   

5.
以次氯酸钠为氧化剂,对预处理过的实际电镀废水中的氨氮进行处理。研究了NaClO投加量、进水pH、曝气量和搅拌方式对氨氮去除效果的影响。结果表明,曝气量和搅拌方式对氨氮去除效果的影响不大。较适宜的工艺条件为:NaClO溶液(有效氯含量6%)50 mL/L,pH 1.50,曝气量0.40 L/min。经本工艺处理的出水氨氮符合国标要求,说明采用次氯酸钠氧化法去除电镀废水中的氨氮可行。  相似文献   

6.
固体氰化钠生产过程中产生的蒸发冷凝水是一种含有有机物的,高氰根、高氨氮废水。本文采用高效吹脱+双氧水氧化+生化处理的方法,分别对废水中的氨氮、氰根、COD的处理进行了研究。主要考察了吹脱时间、温度、p H值对氨氮去除效果的影响;双氧水添加量、反应时间对氰根去除效果的影响。结果表明,在吹脱时间为60min,温度为40℃,p H值为11.0时,氨氮去除率为94.86%;在双氧水添加量为双氧水/氰根=1.5/1.0(物质的量比),反应60min时,氰根去除率为99.29%。预处理后的废水达到生化处理进水要求,经过生化处理后,出水水质可达到国家二级排放标准。  相似文献   

7.
ADC发泡剂产生大量的氨氮废水,采用吹脱法去除氨氮效果差,本文采用次氯酸钠脱除ADC废水中的氨氮.在碱性条件下,将缩合废水经吹脱塔两级吹脱,并用有效氯3.1%的次氯酸钠处理,使废水中氮含量由20 000 mg/L降至60 mg/L.  相似文献   

8.
阿奇霉素废水的预处理   总被引:3,自引:0,他引:3  
针对阿奇霉素废水高COD、高氨氮浓度、高色度以及高含盐量的特点,采用吹脱-铁炭微电解-Fenton氧化预处理阿奇霉素废水,效果良好。试验结果表明:吹脱pH值为11~12、吹脱时间20 h时,氨氮去除率达到80%;铁炭微电解pH值为3~4、铁炭比为1.5、反应时间为80 min时,COD去除率达到45%;向微电解出水投加30 mL/L的H2O2(质量分数为30%)进行Fenton氧化处理,COD去除率提高到89.6%。预处理后,废水的BOD5/COD从0.18提高到0.3,提高了废水的可生化性。  相似文献   

9.
为了实现脂肪胺废水的资源化利用,采用催化氧化吹脱耦合A/O工艺对脂肪胺废水进行处理研究.考察了pH值、温度、时间、催化剂投加量对吹脱效果的影响.结果表明:在进水CODCr的质量浓度为2000~3000mg/L、pH值为11、温度为50℃、时间为2h、催化剂投加量为废水质量的5%的条件下,催化氧化吹脱TKN的去除率大于80%.经催化氧化吹脱工艺处理后废水采用A/O短程硝化反硝化工艺处理,出水各项指标均达到GB8978-1996《污水综合排放标准》中一级标准的要求,催化氧化吹脱耦合A/O工艺处理脂肪胺废水是可行的.  相似文献   

10.
刘兴 《广州化工》2020,48(8):100-102
详细介绍了采用"二级吹脱+硫酸吸附"工艺处理上海某集成电路研发中心排放的高浓度氨氮废水的工艺流程、工艺原理、技术参数及运行要点。工程实际应用表明:二级吹脱+硫酸吸附工艺对高氨氮废水具有良好的处理效果,在原水氨氮浓度450~600 mg/L,进入吹脱塔废水pH为11.5~11.8、温度55℃、气水比1500~3000条件下,最终出水氨氮浓度在10 mg/L以下,去除率达到97%以上。吹脱出的氨采用硫酸溶液吸收,避免二次污染,具有良好的环境效益。  相似文献   

11.
含金属氨络合离子的高浓度氨氮废水处理   总被引:1,自引:0,他引:1  
对氨氮的质量浓度高达10 g/L以上的球镍废水采用空气吹脱技术进行处理,由于废水中氨氮浓度过高,且存在一定量的金属离子与氨形成金属氨络合离子,影响氨氮去除效果。采用延长吹脱时间和加入硫化钠破坏络合作用的方法,提高吹脱效率。试验证明,在反应进行至8~10 h后,加入适量硫化钠,可提高氨氮去除效果,并且对废水中的金属络合离子具有一定的去除作用。反应进行到34 h后,氨氮去除率达到99.1%;进行至46h后,氨氮去除率达到99.98%,氨氮的质量浓度由初始的12 870 mg/L降至3 mg/L。处理后的出水氨氮和铜离子分别达到《污水综合排放标准》(GB8978-1996)的一级和二级排放标准。  相似文献   

12.
在传统的吹脱法处理高浓度氨氮废水处理工艺的基础上,添加了以乳酸乙酯和乙酸为基础的有机复合反硝化剂。研究了温度、pH值等条件的变化对废水中氨氮去除率的影响,并分析不同高浓度氨氮废水中的氨氮去除效果。研究结果表明,在脱氮剂投加量为30mg/L,pH值为9~11,吹脱水位深度为400 mm,吹脱时间在2.5 h以上,温度在25℃以下,废水中氨氮浓度可以从21 000.0 mg/L降低到12.6 mg/L,去除率高达99.94%;温度到达45℃时,废水中氨氮的去除率从21 000.0 mg/L降至0.21 mg/L,氨氮去除率可达99.999%;在常温下对于氨氮浓度在800~30 000 mg/L的废水,经过上述条件吹脱后剩余氨氮浓度皆不超过15 mg/L。  相似文献   

13.
肖磊  阮先萍  黎欢  何金锋  朱森森 《水处理技术》2021,47(1):134-136,140
针对湖北某化工厂废水塘废水应急处理设施进水污染物含量大幅升高,原有废水处理设施处理能力不足的问题,在原有处理工艺的基础上,因地制宜,增加百乐卡工艺、氧化工艺和深度处理系统,并对原加药系统、污泥处理系统、部分构筑物进行校核增容,改造后主体工艺为"前芬顿+氨氮吹脱+百乐卡+中间芬顿+2级A/O+后芬顿+机械过滤"。实际运行数据表明,改造后,出水COD和氨氮的质量浓度分别为82 mg/L和8.6 mg/L,稳定达到GB 8978-1996中一级排放标准,COD和氨氮的去除率分别达到94.6%和99.5%。  相似文献   

14.
本研究高氨氮废水处理工艺为微电解+10%的次氯酸钠溶液的化学处理方法,包括全氟磺酸阳离子树脂活化、氨氮废水稀释、微电解反应、絮凝、氧化反应等步骤。经过试验,微电解+10%的次氯酸钠溶液的高氨氮废水处理新工艺的氨氮去除率在99.7%以上,氨氮含量低于100 mg/L,达到国家环保排放标准。次氯酸钠的用量为每吨废水用1.3%~2.0%,处理成本每吨节约80元,减少处理时间6 h。明显扩大了该方法处理高氨氮废水的适用范围,大大减少了次氯酸钠的用量和处理成本,显著提高了高氨氮废水的处理效率,也避免了现有工艺及后续处理步骤造成的二次污染。  相似文献   

15.
霍莹  郑贝贝  杨勇  张莹  付连超 《广州化工》2014,(20):159-161,194
为了解决某厂高浓度氨氮废水达标排放问题,本文采用吹脱-折点加氯法对高浓度氨氮废水进行了处理试验研究。研究结果表明,在吹脱段pH值为11,温度35℃;氧化段pH值在7.5~8.5,次氯酸钠加入量(ω)为1%,氨氮的脱除率接近100%,可将废水中氨氮的浓度从4703 mg/L降至1 mg/L以下,远远低于GB8978-1996《污水综合排放标准》中的一级标准。  相似文献   

16.
某矾企业预处理采用氨吹脱联合多级氨氮分离膜工艺,对高氨氮废水进行预处理,运行实践表明,工艺运行稳定可靠,进水氨氮由1500~2000mg/L降到20mg/L以下。系统运行稳定,氨吹脱平均去除率在85%左右,多级氨氮分离膜平均去除率在90%左右,总平均去除率在99%左右。整体工艺运行稳定可靠,生产回用水标准达到《钒工业污染排放标准》(GB 26452—2011)表2“新建企业水污染物排放浓度限值及单位产品基准排水量”中间接排放标准要求。  相似文献   

17.
针对兰炭废水高COD、高氨氮、B/C极低以及具有较强生物毒性的特点,采用具有自主知识产权的除油—微电解—吹氨—高效菌种生化技术—混凝沉淀—催化氧化联合工艺对兰炭废水进行处理。试验结果表明:兰炭废水经预处理工序后,B/C由0.1提高至0.3~0.6;生化工序处理后出水的COD和氨氮分别为300、15 mg/L;最终通过深度处理后出水水质符合《炼焦化学工业污染物排放标准》(GB 16171—2012)中的现有企业直接排放标准,该组合工艺对COD和氨氮的总去除率分别可达99.5%和99%。  相似文献   

18.
基于电镀废水有机污染物的复杂性,采用活性污泥法和铁粉-Fenton法联合处理电镀废水。实验结果表明:驯化的活性污泥在添加1.6 g/L硫酸铵作为氮源,pH 7.2的电镀废水中,摇瓶培养72 h,废水CODCr去除率达到30%以上,但还未达到排放标准。继续用铁粉-Fenton法对处理后电镀废水上清液进行氧化处理,在H2O2用量为0.5%,加入过量铁粉,pH 3.0,25℃处理120 min,废水CODCr的去除率达到64.66%,最终降低到35.62 mg/L,低于CODCr排放标准限值。  相似文献   

19.
ADC发泡剂产生大量的氨氮废水,采用吹脱法去除氨氮效果差,本文采用次氯酸钠脱除ADC废水中的氨氮,在碱性条件下,将缩合废水经吹脱塔两级吹脱,并用有效氯3.1%的次氯酸钠处理,使废水中氮含量由2:0000mg/L降至60mg/L。  相似文献   

20.
广东省电镀废水处理技术现状与达标分析   总被引:1,自引:0,他引:1  
王刚  张路路  尹倩婷  许冲 《电镀与涂饰》2014,33(20):891-895
在对广东省电镀企业进行问卷调研的基础上,概述了广东省电镀行业的发展状况、电镀废水处理工艺和污染物处理达标难易等状况,并对电镀废水处理重点控制指标(包括总镍、总铜、COD、总磷、氨氮与总氮等)达标的可行性进行了分析。认为现有电镀企业总镍、总磷浓度控制在0.5 mg/L以下(新建电镀企业总镍浓度控制在0.1 mg/L)、总铜浓度控制在0.3~0.5 mg/L,是可行的。对于生化处理效果不理想,出水COD未能达标的电镀企业,可增加臭氧氧化和Fenton氧化等工艺,以确保出水达标。对于含氨氮较高的废水,可进行分流,并采用氨吹脱、折点加氯、化学沉淀等方法去除,将废水中总氮浓度控制在50~80 mg/L,然后通过生物脱氮处理,实现总氮达标。本文可为科学设置广东省地方电镀水污染物排放标准的限值提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号