首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以碳微球(CMSs)为载体,采用离子交换法制备了CMSs负载的磷酸银复合材料(CMSs/Ag3PO4)。对合成的CMSs/Ag3PO4复合材料的相组成、表面形貌和紫外-可见(UV-Vis)吸收光谱进行了表征,通过可见光催化降解甲基橙实验对所制备的CMSs/Ag3PO4复合材料的光催化活性进行了考察。结果表明:CMSs颗粒大小在100~200 nm,CMSs/Ag3PO4颗粒大小在200~250 nm;CMSs/Ag3PO4在可见光范围有强吸收,在可见光照射下,CMSs/Ag3PO4能有效地降解甲基橙,光照射60min对甲基橙的降解率可以达到92.5%;循环使用5次后,对甲基橙的降解率仍然保持为86.2%。  相似文献   

2.
以葡萄糖和氯化铁为原料,通过水热反应法制备得到以Fe_3O_4为核,C为壳的核壳型磁性复合材料(C@Fe_3O_4),并以此为载体,通过戊二醛的交联作用将纳米TiO_2负载到C@Fe_3O_4上,得到磁性光催化剂TiO_2/C@Fe_3O_4。通过XRD、TGA、SEM及粒度分析仪分析了TiO_2/C@Fe_3O_4的物相和微观结构,并通过对亚甲基蓝溶液的降解研究其光催化和循环使用性能。结果表明,所制备的TiO_2/C@Fe_3O_4催化剂中TiO_2为锐钛矿型晶体,Fe_3O_4为尖晶石型晶体;TiO_2/C@Fe_3O_4催化剂为单分散微球,平均粒径为4.58μm,TiO_2的平均粒径为15.03 nm,并且均匀的负载在C@Fe_3O_4表面。紫外条件下,TiO_2/C@Fe_3O_4显示了良好的光催化性能及循环使用性能,TiO_2/C@Fe_3O_4对亚甲基蓝的最大降解率为97.5%,循环使用10次后,其最大降解率仅下降了5.9%。  相似文献   

3.
利用金属还原菌Shewanella oneidensis MR-1在Fe_3O_4微球上原位负载钯纳米颗粒,成功合成了Pd/Fe_3O_4磁性复合材料并对其进行表征分析。Pd/Fe_3O_4磁性纳米复合材料能催化硼氢化钠还原对硝基苯酚等硝基芳香化合物,反应30 min后,对硝基苯酚(4-NP)的去除率可达98%。Pd/Fe_3O_4磁性复合材料在室温下具有超顺磁性,在外加磁场条件下即可快速从反应液中分离出来和重复利用,且重复利用10次后4-NP去除率依然超过86%,具有良好的稳定性。该生物合成方法不需要有害的试剂,而且解决了生物钯的回收和重复利用问题,为贵金属纳米复合材料的发展开辟了一条新的、环境友好的途径。  相似文献   

4.
先采用水热法制备具有分等级结构的BiOBr微球,然后采用沉积-沉淀法将Ag3PO4负载于BiOBr微球表面。采用扫描电子显微镜、X-射线粉末衍射仪、N2吸脱附等温线和紫外-可见漫反射光谱对所制备的样品进行了测试表征;将Ag3PO4/BiOBr微球用于可见光催化分解甲基橙溶液,考察了Ag3PO4的负载量及重复使用对可见光(420nm)催化活性影响的研究。结果表明:Ag3PO4/BiOBr微球具有分等级介孔-大孔结构,Ag3PO4与载体BiOBr间结合紧密。单纯BiOBr微球几乎没有可见光催化活性,负载Ag3PO4后表现出较好的可见光催化活性,其中以Ag3PO4(50%)/BiOBr样品的催化效果最佳,30min内将近90%的甲基橙被降解,该催化剂样品在重复实验中表现出较好光催化稳定性。  相似文献   

5.
采用共沉淀法制备了磁性Fe_3O_4纳米粒子(Fe_3O_4 NPs),通过多巴胺(DA)原位氧化聚合的方式,将聚多巴胺(PDA)引入到Fe_3O_4NPs表面,制备了PDA包覆Fe_3O_4纳米粒子(Fe_3O_4@PDA NPs)。通过TEM、XRD、FTIR、XPS对粒子的形貌、结构及组成进行了表征。随后将其作为异相芬顿(Fenton)催化剂用于催化亚甲基蓝(MB)的氧化降解,对该催化剂的催化活性及稳定性进行了考察,探讨了催化反应的机理。结果表明:Fe_3O_4NPs作为催化剂时,,MB 2 h脱除率为26%,而Fe_3O_4@PDA NPs作为催化剂时,30 min,MB的脱除率为99%。具有酚醌单元的PDA可促进Fe~(3+)与Fe~(2+)间的循环,使得Fe_3O_4@PDA NPs较之Fe_3O_4NPs具有更强的催化活性。此外,Fe_3O_4@PDA NPs稳定性良好,可实现2次回收再利用,对活性降低的Fe_3O_4@PDA NPs用NaBH_4处理后,仍具有催化降解MB反应的能力。  相似文献   

6.
采用部分还原法制备Fe_3O_4磁性纳米颗粒(MNP),通过反相微乳液法在磁性Fe_3O_4纳米颗粒表面包覆SiO_2且其表面由叠氮(-N3)基团进行修饰,制备了一种新Fe_3O_4@SiO_2@N3复合材料。TEM和IR对材料形态结构及包覆情况的分析,显示SiO_2包覆在Fe_3O_4表面,形成尺寸约为50 nm,硅球结构清晰较为均匀,单分散性好的复合结构。其与3-叠氮丙基三乙氧基硅烷接枝叠氮基团,形成尺寸为70 nm左右的三层复合结构。该复合材料具有良好的分散性,可作为合成磁性纳米应用材料的中间体。  相似文献   

7.
采用原位氧化还原法制备了三维石墨烯负载型Fe_3O_4(Fe_3O_4/3D GN)非均相Fenton反应催化剂,对其进行了表征,并用于酸性红B染料废水的Fenton氧化降解。表征结果显示:制备的Fe_3O_4/3D GN具有相互贯通的独特三维网状结构,Fe_3O_4纳米颗粒均匀分散在石墨烯片层中。实验结果表明:Fe_3O_4/3D GN具有较高的催化活性和稳定性。Fe_3O_4/3D GN非均相Fenton催化降解酸性红B的最佳工艺条件为:H2O2投加量0.67 m L/L,催化剂投加量1 g/L,初始溶液pH为6。在此最佳工艺条件下反应30 min,酸性红B染料废水的脱色率达到95.64%。  相似文献   

8.
《山东化工》2021,50(14)
采用高温热解法和水热合成法制备Sn3O4/SnO异质结构复合材料,通过SEM等方法对复合材料进行表征分析,探索光催化原理。在可见光照的环境下,记录一定时间内光催化剂对目标降解物甲基橙的降解率。实验结果显示,Sn3O4/SnO具有较大比面积,且结构为絮状结构微球,对甲基橙降解效果显著,70min后甲基橙降解率到达约92%,循环降解多次,仍保持良好的催化活性。  相似文献   

9.
以片状g-C_3N_4、六水三氯化铁、柠檬酸三钠和尿素为原料,聚丙烯酰胺为稳定剂,采用水热法制备Fe_3O_4/g-C_3N_4复合材料并作为过硫酸钠(PS)降解罗丹明B(RhB)的活化剂。通过XRD、SEM、EDS、FT-IR对样品结构、形貌与组成进行表征。考察Fe_3O_4与g-C_3N_4的质量比、活化剂质量、PS质量、溶液pH等对Fe_3O_4/g-C_3N_4活化PS降解RhB效果的影响。结果表明,与g-C_3N_4复合有效提高了Fe_3O_4的分散性和活化性能;在Fe_3O_4与g-C_3N_4质量比为3∶4、Fe_3O_4/g-C_3N_4质量为50 mg、PS质量为20 mg、RhB溶液pH为2.1时,反应120 min RhB的降解率达到100%。Fe_3O_4/g-C_3N_4可用磁铁进行分离回收,循环使用5次,活化PS去除RhB降解率仍达95.5%。  相似文献   

10.
以葡萄糖和葡萄糖酸亚铁为前驱体、以氯化锌为表面活化剂,在前期水热条件下以及后期氮气保护的高温条件下制备出表面活化磁性炭微球(AMCMs),并研究了该材料对水中磺胺甲噁唑(SMX)的吸附性能。结果表明,平均粒径约4μm的AMCMs分散性良好,比表面积高达1 419 m~2/g,磁性四氧化三铁(Fe_3O_4)颗粒均匀地分散在整个炭微球中,粒径约为15~25 nm,并且Fe_3O_4表面被石墨化碳包覆,该包覆层既防止了Fe_3O_4颗粒的团聚,同时也保护其免受外界环境影响;AMCMs对SMX的吸附动力学遵循拟2级动力学模型,其对SMX的吸附行为与Langmuir吸附模型拟合更优。AMCMs在重复利用5次之后对SMX的吸附容量仍能达到首次使用吸附容量的82%。  相似文献   

11.
采用化学共沉淀方法制备Fe_3O_4磁性粒子,并使用油酸和十一烯酸对其进行表面改性,然后采用一步细乳液聚合法制备含有羧基官能团的Fe_3O_4/P(St/ACPA)磁性高分子纳米球,对磁流体和磁性高分子纳米球进行性能表征。结果表明,改性的Fe_3O_4磁流体分散性好,粒径均一,在室温下呈超顺磁性,磁含量为68.5%(w),饱和磁化强度为51.3emu/g;Fe_3O_4/P(St/ACPA)磁性高分子纳米球成球性好,粒径为70 nm,磁含量为39%(w),饱和磁化强度为27.9 emu/g。  相似文献   

12.
《广东化工》2021,48(3)
以醋酸钠为沉淀剂,乙二醇为溶剂和还原剂,氯化铁、氯化钴、硝酸锌为原料,通过一步水热法成功制备了Zn_xCo_(1-x)Fe_2O_4纳米球。结果表明,Zn_xCo_(1-x)Fe_2O_4纳米球直径为80nm左右,分散性良好。以亚甲基蓝为目标降解物研究了纳米球的光催化性能,研究发现,在紫外光照射下,Zn_xCo_(1-x)Fe_2O_4纳米球具有优异的光催化活性,在360 min之内对亚甲基蓝的催化分解率可达76%。以其作为锂离子电池负极材料研究了电化学性能,发现在0.1 C倍率下,首次放电和充电容量可达1729.7 mAh/g和1098.8 mAh/g,经过20次充放电循环后放电和充电容量为812.5m Ah/g和677.68 mAh/g。  相似文献   

13.
本研究以氯化铁、柠檬酸钠及醋酸钠为原料,乙二醇为溶剂通过溶剂热的方法合成了直径为200-300纳米的四氧化三铁(Fe_3O_4)纳米球。然后通过单体吡咯低温下的聚合,使聚吡咯均匀分布在Fe_3O_4球体表面,最后经过碳化得到含氮碳包覆的Fe_3O_4纳米球。分别对Fe_3O_4纳米球与包覆碳层后的Fe_3O_4纳米球进行电化学性能测试。结果表明:包覆碳层之后的Fe_3O_4球表现出更稳定的循环性能,在100 mA g~(-1)的电流密度条件下,经过85圈的循环能够保持513mAh g~(-1)的比容量,从第二圈起每圈衰减平均为0.17%,比没有包覆的Fe_3O_4稳定性大大提高。  相似文献   

14.
《应用化工》2022,(12):3275-3279
将共沉淀法与溶胶-凝胶法相结合,制备Fe_3O_4-TiO_2复合材料,通过XRD、XPS、BET、TEM等测试技术对Fe_3O_4-TiO_2进行表征分析,以四环素为目标污染物,在Fe_3O_4含量、反应投加量以及反应初始pH等条件下,研究了Fe_3O_4-TiO_2光催化降解四环素的效果。结果表明,光催化降解60 mL浓度20 mg/L的四环素废水,Fe_3O_4-TiO_2的最优配比为m(Fe_3O_4)∶m(TiO_2)=2.5%,2.5%Fe_3O_4-TiO_2的最优投加量为60 mg,最优pH约为7,60 min降解四环素废水可达90%以上。  相似文献   

15.
采用简单高效的两步法制备交联结构的碳/氮双掺杂Fe_3O_4锂离子电池阳极复合材料(Fe_3O_4/C/N)。利用XRD、XPS、TG、SEM、TEM对其进行了表征与分析。当具有交联状纳米结构的复合材料Fe_3O_4/C/N用作锂离子电池的阳极材料时,展现出较高的可逆容量及优异的循环性能。在电流密度为0.2 A/g的条件下,交联状Fe_3O_4/C/N的首次库伦效率为73.9%,循环210圈后,容量仍达516 mA·h/g,容量保持率为64.6%,每个循环周期的容量衰减率为0.17%。  相似文献   

16.
采用层层自组装法成功制备了兼具磁性和光催化活性的双功能Fe_3O_4@SiO_2/(TiO_2/PW_(12))_(10)复合微球,利用扫描电镜、红外光谱和X-射线能谱仪对所得微球进行了结构和形貌的表征。以甲基橙为模型污染物,研究了紫外光下Fe_3O_4@SiO_2/(TiO_2/PW_(12))_(10)的光催化性质,系统考察了甲基橙溶液的初始浓度、溶液pH和无机氧化剂碘酸钾对复合膜催化效率的影响。动力学研究表明,在不同浓度甲基橙溶液中,染料的光催化降解遵循表观一级反应动力学。磁性Fe_3O_4纳米粒子的使用实现了反应后催化剂方便、快速和高效地分离回收。  相似文献   

17.
采用水热法制备了GO/Fe_3O_4/ZnO复合材料,并用SEM、FT-IR、XRD等手段对其进行了表征。以苯酚为降解目标,探讨了GO/Fe_3O_4/ZnO复合材料用量、H_2O_2投加量、苯酚浓度和pH等因素对降解苯酚效果的影响。实验结果表明,在GO/Fe_3O_4/ZnO投加量为200 mg/L,H_2O_2投加量为12 mmol/L,pH=7.2的条件下,利用该复合材料对苯酚质量浓度为88.85 mg/L的油田污水进行光催化Fenton降解,60 min后,苯酚降解率可达98%。  相似文献   

18.
以Fe_3O_4纳米粒子和海藻生物质炭(ABc)为原料,采用共沉淀法制备了磁性海藻生物质炭(Fe_3O_4@ABc)复合材料,并用于甲基橙(MO)的吸附。通过XRD、SEM、TEM、FTIR和VSM对Fe_3O_4@ABc复合材料进行了表征。考察了溶液pH、吸附剂添加量对MO吸附性能的影响,并进行了吸附动力学和等温吸附模型拟合。结果表明,Fe_3O_4纳米粒子成功复合到ABc表面,Fe_3O_4@ABc复合材料具有超顺磁性,在外在磁场的作用下能够快速分离;当m(ABc)∶m(Fe_3O_4)=2∶1时,制备的Fe_3O_4@ABc复合材料比表面积为622.88m2/g,平均孔径1.55 nm,具有良好的MO去除效果。当MO质量浓度为100 mg/L,Fe_3O_4@ABc添加量为10 mg,pH为3,吸附时间240 min,MO的去除率为96.14%。制备的Fe_3O_4@ABc复合材料对MO的吸附过程符合拟一级动力学模型,吸附等温线符合Freundlich模型,并以物理吸附为主,化学吸附为辅。  相似文献   

19.
采用两步法成功制备核壳结构复合材料Fe_3O_4@SiO_2@Y_2O_3∶Eu~(3+)纳米球。首先通过溶胶-凝胶法制备包覆均匀的Fe_3O_4@SiO_2纳米球,然后以它为载体,用水热法将Y3+/Eu3+的水合化合物均匀生长到Fe_3O_4@SiO_2纳米球表面,退火后获得目标产物。利用X射线衍射(XRD)、能谱仪(EDS)、场发射扫描电子显微镜(FESEM)对产物进行表征。结果表明:Fe_3O_4、SiO_2和Y_2O_3∶Eu~(3+)之间为物理结合;该复合纳米球直径约350nm,壳层包覆非常均匀且颗粒分散性良好。该文结合制备过程总结出该复合材料的可控生长条件,样品的分散性与防氧化保护尤为重要。  相似文献   

20.
以酚醛树脂为炭前驱体、水热法合成的Fe_3O_4纳米微球为核,经研磨、干燥、炭化制备Fe_3O_4@C纳米核壳型微球。结果表明,包覆后的Fe_3O_4@C微球尺寸均匀且无团聚现象。碳包覆量影响着Fe_3O_4@C锂电池负极材料的电化学性能。20%为最佳包覆量,其首次放电比容量为984 mA·h/g,100次循环后放电比容量保持在413 mA·h/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号