首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Interruption of folate metabolism by trimethoprim results in the elevated expression of folate stress proteins in Escherichia coli. E. coli grown in culture medium supplemented with the folate-dependent metabolites glycine, methionine, and the purine nucleoside inosine shows reduced expression of folate stress proteins. The folate stress proteins include the universal stress protein, the ferric uptake regulatory repressor, and possibly, lipoamide dehydrogenase, the L protein component of the glycine cleavage enzyme complex.  相似文献   

3.
4.
Disruption of normal protein trafficking in the Escherichia coli cell envelope (inner membrane, periplasm, outer membrane) can activate two parallel, but distinct, signal transduction pathways. This activation stimulates the expression of a number of genes whose products function to fold or degrade the mislocalized proteins. One of these signal transduction pathways is a two-component regulatory system comprised of the histidine kinase CpxA and the response regulator, CpxR. In this study we characterized gain-of-function Cpx* mutants in order to learn more about Cpx signal transduction. Sequencing demonstrated that the cpx* mutations cluster in either the periplasmic, the transmembrane, or the H-box domain of CpxA. Intriguingly, most of the periplasmic cpx* gain-of-function mutations cluster in the central region of this domain, and one encodes a deletion of 32 amino acids. Strains harboring these mutations are rendered insensitive to a normally activating signal. In vivo and in vitro characterization of maltose-binding-protein fusions between the wild-type CpxA and a representative cpx* mutant, CpxA101, showed that the mutant CpxA is altered in phosphotransfer reactions with CpxR. Specifically, while both CpxA and CpxA101 function as autokinases and CpxR kinases, CpxA101 is devoid of a CpxR-P phosphatase activity normally present in the wild-type protein. Taken together, the data support a model for Cpx-mediated signal transduction in which the kinase/phosphatase ratio is elevated by stress. Further, the sequence and phenotypes of periplasmic cpx* mutations suggest that interactions with a periplasmic signaling molecule may normally dictate a decreased kinase/phosphatase ratio under nonstress conditions.  相似文献   

5.
6.
7.
We measured the spin-lattice relaxation times (T1) of water protons and intermolecular cross-relaxation times (T(IS)) from irradiated protein protons (f2-irradiation at 1.95 or -4.00 ppm) of rabbit normal and monoiodoacetate-induced degenerated knee articular cartilages to observed water protons. The mean values of T1 (T1) for control and degenerated rabbit knee cartilages were 1.87+/-0.15 (mean+/-SD, n=29) and 1.82+/-0.13 s (n=34), respectively. The mean values of water content (W(H2O)) for control and degenerated rabbit knee cartilages were 82.9+/-2.09 (n=26) and 83.1+/-2.57% (n=28), respectively. These values were not statistically different from each other. However, the mean values of T(IS) (T(IS)) for normal knee articular cartilage were significantly different from those for degenerated cartilage: (normal), T(IS) (f2=1.95 ppm)=2.46+/-0.62 s (n=28), T(IS) (f2=-4.00 ppm)=4.25+/-1.26 s (n=26); (degenerated), T(IS) (f2=1.95 ppm)=1.99+/-0.76s (n=34), T(IS) (f2=-4.00 ppm)=3.33+/-0.76 s (n=31). Obtained results may be attributed to the reported switchover from type II to type I collagen syntheses in osteoarthritic cartilage, resulting in broad collagen fibers. This specificity of cross-relaxation effect may prove useful in the noninvasive and pathophysiological evaluation of cartilage tissues in vivo.  相似文献   

8.
The replication of double-stranded plasmids containing a single adduct was analyzed in vivo by means of a sequence heterology that marks the two DNA strands. The single adduct was located within the sequence heterology, making it possible to distinguish trans-lesion synthesis (TLS) events from damage avoidance events in which replication did not proceed through the lesion. When the SOS system of the host bacteria is not induced, the C8-guanine adduct formed by the carcinogen N-2-acetylaminofluorene (AAF) yields less than 1% of TLS events, showing that replication does not readily proceed through the lesion. In contrast, the deacetylated adduct N-(deoxyguanosin-8-yl)-2-aminofluorene yields approximately 70% of TLS events under both SOS-induced and uninduced conditions. These results for TLS in vivo are in good agreement with the observation that AAF blocks DNA replication in vitro, whereas aminofluorene does so only weakly. Induction of the SOS response causes an increase in TLS events through the AAF adduct (approximately 13%). The increase in TLS is accompanied by a proportional increase in the frequency of AAF-induced frameshift mutations. However, the polymerase frameshift error rate per TLS event was essentially constant throughout the SOS response. In an SOS-induced delta umuD/C strain, both US events and mutagenesis are totally abolished even though there is no decrease in plasmid survival. Error-free replication evidently proceeds efficiently by means of the damage avoidance pathway. We conclude that SOS mutagenesis results from increased TLS rather than from an increased frameshift error rate of the polymerase.  相似文献   

9.
Mutagenesis at 3,N4-ethenocytosine (epsilonC), a nonpairing mutagenic lesion, is significantly enhanced in Escherichia coli cells pretreated with UV, alkylating agents, or H2O2. This effect, termed UVM (for UV modulation of mutagenesis), is distinct from known DNA damage-inducible responses, such as the SOS response, the adaptive response to alkylating agents, or the oxyR-mediated response to oxidative agents. Here, we have addressed the hypothesis that UVM results from transient depletion of a mismatch repair activity that normally acts to reduce mutagenesis. To test whether the loss of mismatch repair activities results in the predicted constitutive UVM phenotype, E. coli cells defective for methyl-directed mismatch repair, for very-short-patch repair, or for the N-glycosylase activities MutY and MutM were treated with the UVM-inducing agent 1-methyl-3-nitro-1-nitrosoguanidine, with subsequent transfection of M13 viral single-stranded DNA bearing a site-specific epsilonC lesion. Survival of the M13 DNA was measured as transfection efficiency, and mutation fixation at the lesion was characterized by multiplex sequencing technology. The results showed normal UVM induction patterns in all the repair-defective strains tested. In addition, normal UVM induction was observed in cells overexpressing MutH, MutL, or MutS. All strains displayed UVM reactivation, the term used to describe the increased survival of epsilonC-containing DNA in UVM-induced cells. Taken together, these results indicate that the UVM response is independent of known mismatch repair systems in E. coli and may thus represent a previously unrecognized misrepair or misreplication pathway.  相似文献   

10.
Alcohol's suppressive effects on polymorphonuclear leukocyte (PMN) production and function increases host susceptibility to a wide variety of infections and impairs the ability of these effector cells to seek and destroy invading pathogens. Granulocyte colony-stimulating factor (G-CSF), an important regulator of PMN production and function, is known to be increased in the plasma during infectious episodes. In previous studies we found acute alcohol intoxication to suppress the tumor necrosis factor-alpha (TNF alpha) response to in vivo challenges with bacteria or lipopolysaccharide. The present study was initiated to determine the impact of alcohol intoxication on the plasma G-CSF response to gram-negative infection. For this purpose, rats received an intravenous challenge of Escherichia coli (10(6) CFU) 30 min after an intraperitoneal injection of ethanol (5.5 g/kg) or an equivalent volume of saline (control). Ethanol-intoxicated rats had a greater 48 hr mortality to live E. coli injection than did unintoxicated animals (45% vs. 8%). Despite an increased bacterial burden in both the lung and liver at 24 hr after initiating E. coli infection in alcohol-intoxicated animals, PMN tissue recruitment, indexed as myeloperoxidase activity, did not differ between control and alcohol-treated rats. Moreover, alcohol suppressed blood PMN phagocytic capacity to a greater extent in animals given alcohol than controls at 5 and 24 hr after initiating infection. In control animals after intravenous E. coli injection, bioactive G-CSF increased in plasma and peaked near 300 ng/ml at 8 hr. In rats pretreated with alcohol, the plasma G-CSF response was markedly suppressed in response to intravenous E. coli (p < 0.05). In a second experiment, neutralization of the E. coli-induced plasma TNF alpha response by pretreatment with anti-TNF alpha antibody similarly inhibited the plasma G-CSF response. These results support the postulate that alcohol-induced inhibition of TNF alpha directly contributes to the adverse effects of alcohol on PMN function by suppressing the normal autocrine amplification pathway responsible for G-CSF production.  相似文献   

11.
With an oxystat, changes in the pattern of expression of FNR-dependent genes from Escherichia coli were studied as a function of the O2 tension (pO2) in the medium. Expression of all four tested genes was decreased by increasing O2. However, the pO2 values that gave rise to half-maximal repression (pO(0.5)) were dependent on the particular promoter and varied between 1 and 5 millibars (1 bar = 10(5) Pa). The pO(0.5) value for the ArcA-regulated succinate dehydrogenase genes was in the same range (pO(0.5) = 4.6 millibars). At these pO2 values, the cytoplasm can be calculated to be well supplied with O2 by diffusion. Therefore, intracellular O2 could provide the signal to FNR, suggesting that there is no need for a signal transfer chain. Genetic inactivation of the enzymes and coenzymes of aerobic respiration had no or limited effects on the pO(0.5) of FNR-regulated genes. Thus, neither the components of aerobic respiration nor their redox state are the primary sites for O2 sensing, supporting the significance of intracellular O2. Non-redox-active, structural O2 analogs like CO, CN-, and N3-, could not mimic the effect of O2 on FNR-regulated genes under anaerobic conditions and did not decrease the inhibitory effect of O2 under aerobic conditions.  相似文献   

12.
Hemolysin B (HlyB) is a membrane-bound transport protein composed of an amino-terminal multiple membrane-spanning portion followed by a conserved ATP binding sequence. Together with the inner membrane protein HlyD and the outer membrane protein TolC, HlyB is responsible for transport of the 107-kDa toxin HlyA from the cytoplasm, across both membranes of the cell envelope of Escherichia coli, directly to the medium. We have used a mutational approach to investigate a postulated interaction between HlyA and HlyB. We have isolated transport-deficient mutants of HlyA altered in the C-terminal signal sequence and used one of these, a deletion of 29 amino acids, to select compensatory mutants in the transporter protein HlyB. Fifteen mutants located at six different sites, all mapping within the amino-terminal multiple membrane-spanning domain of HlyB, were identified. All of the mutations are clustered into three groups located close to the predicted inner face of the cytoplasmic membrane. We propose that these locations are close to sites on HlyB that interact with the C-terminal signal sequence of HlyA. This interaction is likely to involve either binding of HlyA to HlyB or activation of the transport mechanism. The compensatory mutants also display different patterns of specificity in terms of their ability to transport different HlyA mutants. The fact that point mutations are able to compensate for drastic changes in the signal sequence of HlyA suggests that substrate specificity of transporters such as HlyB may shift dramatically during evolutionary history. This could account for the diversity of substrates observed for the ABC transporter superfamily in nature.  相似文献   

13.
14.
15.
CheY is a response regulator protein of Escherichia coli that interacts with the flagellar motor-switch complex to modulate flagellar rotation during chemotaxis. The switch complex is composed of three proteins, FliG, FliM, and FliN. Recent biochemical data suggest a direct interaction of CheY with FliM. In order to determine the FliM binding face of CheY, we isolated dominant suppressors of fliM mutations in cheY with limited allele specificity. The protein products of suppressor cheY alleles were purified and assayed for FliM binding. Six out of nine CheY mutants were defective in FliM binding. Suppressor amino acid substitutions were mapped on the crystal structure of CheY showing clustering of reduced binding mutations on a solvent-accessible face of CheY, thus revealing a FliM binding face of CheY. To examine the basis of genetic suppression, we cloned, purified, and tested FliM mutants for CheY binding. Like the wild-type FliM, the mutants were also defective in binding to various CheY suppressor mutants. This was not expected if CheY suppressors were compensatory conformational suppressors. Furthermore, a comparison of flagellar rotation patterns indicated that the cheY suppressors had readjusted the clockwise bias of the fliM strains. However, a chemotaxis assay revealed that the readjustment of the clockwise bias was not sufficient to make cells chemotactic. Although the suppressors did not restore chemotaxis, they did increase swarming on motility plates by a process called "pseudotaxis." Therefore, our genetic selection scheme generated suppressors of pseudotaxis or switch bias adjustment. The binding results suggest that the mechanism for this adjustment is the reduction in binding affinity of activated CheY. Therefore, these suppressors identified the switch-binding surface of CheY by loss-of-function defects rather than gain-of-function compensatory conformational changes.  相似文献   

16.
Multiple antibiotic resistance in Escherichia coli has typically been associated with mutations at the mar locus, located at 34 min on the E. coli chromosome. A new mutant, marC, isolated on the basis of a Mar phenotype but which maps to the soxRS (encoding the regulators of the superoxide stress response) locus located at 92 min, is described here. This mutant shares several features with a known constitutive allele of the soxRS gene, prompting the conclusion that it is a highly active allele of this gene. The marC mutation has thus been given the designation soxR201. This new mutant was used to examine the relationship between the mar and sox loci in promoting antibiotic resistance. The results of these studies indicate that full antibiotic resistance resulting from the soxR201 mutation is partially dependent on an intact mar locus and is associated with an increase in the steady-state level of mar-specific mRNA. In addition, paraquat treatment of wild-type cells is shown to increase the level of antibiotic resistance in a dose-dependent manner that requires an intact soxRS locus. Conversely, overexpression of MarA from a multicopy plasmid results in weak activation of a superoxide stress response target gene. These findings are consistent with a model in which the regulatory factors encoded by the marA and soxS genes control the expression of overlapping sets of target genes, with MarA preferentially acting on targets involved with antibiotic resistance and SoxS directed primarily towards components of the superoxide stress response. Furthermore, compounds frequently used to induce the superoxide stress response, including paraquat, menadione, and phenazine methosulfate, differ with respect to the amount of protection provided against them by the antibiotic resistance response.  相似文献   

17.
The influence of cold stress at 4 and 0 degree C on the detection time as assessed by impedance technology (Bactometer; Biomérieux, Marcy l'Etoile, France) of different enterohemorrhagic Escherichia coli (EHEC) strains was determined. Although there is some variation in susceptibility among EHEC strains, prolonged exposure of EHEC to cold stress, i.e., 4 and 5 days at 4 and 0 degree C, respectively, in general significantly increased their detection time. This reflects an increase of the lag-phase time caused by cold stress. Two EHEC strains were selected to determine the minimum preliminary enrichment time that would ensure a positive PCR detection of low numbers of verotoxin-producing E. coli (VTEC; 2 to 2 x 10(5) CFU/25 g) inoculated into ground beef (25 g) and stored at 4 or -20 degrees C for 8 and 14 days, respectively. Incubation times of 6 and 9 h of 1 to 10 CFU/g and 1 to 10 CFU/25 g, respectively, were sufficient for PCR detection of VTEC in ground beef when analysis was performed immediately after inoculation (no cold stress). When cells are exposed to cold stress (4 or -20 degrees C) a 24-h enrichment period is recommended. Restriction of enrichment time to 9 h under these circumstances decreases the sensitivity of PCR detection to 80 CFU/g. Hence, to obtain maximum sensitivity, PCR detection of VTEC in naturally contaminated ground beef should be performed after 24 h of enrichment.  相似文献   

18.
19.
We describe a genetic analysis of the vitamin B12 receptor of Escherichia coli. Through the use of informational suppression, we have been able to generate a family of receptor variants, each identical save for a single, known substitution (Ser, Gln, Lys, Tyr, Leu, Cys, Phe) at a known site. We have studied 22 different mutants, 14 in detail, distributed throughout the length of the btuB gene. Most amino acid substitutions have a pleiotropic effect with respect to all ligands tested, the two colicins E1 and E3, the T5-like bacteriophage BF23, and vitamin B12. (The dramatic effect of a single amino acid substitution is also well exemplified by the G142A missense change which renders the receptor completely non-functional.) In some instances, however, we have been able to modify a subset of receptor functions (viz. Q62, Q150 and Q299 and the response to phage BF23). These data are summarized on a two-dimensional folding model for the BtuB protein in the outer membrane (devised using both amphipathic beta-strand analysis and sequence conservation amongst the TonB-dependent receptors). In addition, we report that the extreme C-terminus of BtuB is vital for receptor localization and provide evidence for it being a membrane-spanning beta-sheet with residue L588 situated on its hydrophobic surface. Two of the C-terminal btuB mutations are located within the region of overlap with the recently identified dga (murl) gene.  相似文献   

20.
Site-directed mutagenesis and kinetic studies have been employed to identify amino acid residues involved in aspartate binding and transition state stabilization during the formation of beta-aspartyl-AMP in the reaction mechanism of Escherichia coli asparagine synthetase B (AS-B). Three conserved amino acids in the segment defined by residues 317-330 appear particularly crucial for enzymatic activity. For example, when Arg-325 is replaced by alanine or lysine, the resulting mutant enzymes possess no detectable asparagine synthetase activity. The catalytic activity of the R325A AS-B mutant can, however, be restored to about 1/6 of that of wild-type AS-B by the addition of guanidinium HCl (GdmHCl). Detailed kinetic analysis of the rescued activity suggests that Arg-325 is involved in stabilization of a pentacovalent intermediate leading to the formation beta-aspartyl-AMP. This rescue experiment is the second example in which the function of a critical arginine residue that has been substituted by mutagenesis is restored by GdmHCl. Mutation of Thr-322 and Thr-323 also produces enzymes with altered kinetic properties, suggesting that these threonines are involved in aspartate binding and/or stabilization of intermediates en route to beta-aspartyl-AMP. These experiments are the first to identify residues outside of the N-terminal glutamine amide transfer domain that have any functional role in asparagine synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号