首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
By using Co2+ and Co3+ salts, and freshly extracted ovalbumin, Co3O4 nanocrystals have been synthesized successfully. The pH of the solution was self-regulated for the hydrolysis of metal ions as the ovalbumin-water mixture was highly basic. Water soluble ovalbumin proteins served as a perfect matrix for entrapment of Co2+ and Co3+ ions thus forming a gel. Upon heat treatment, the dried gel precursor decomposed into nanocrystalline Co3O4. The crystallite size obtained by XRD line profile fitting was 45 ± 8 nm and particle size estimated from the SEM was in the range 20 nm-2 μm. EPR results show a very good fit to literature reports for nanocrystals in the size range of 8–17 nm. Even though the overall particle size is quite large and its distribution is quite wide EPR results confirm nanocrystalline nature of the particles obtained. Presented route is simple, cost effective, and environmentally friendly.  相似文献   

2.
Lanthanum vanadate (LaVO4) nanoplates with monoclinic (m) phase were synthesized by a facile solventless method. Lanthanum nitrate and ammonium metavanadate was used as precursors in this method. X-ray diffraction pattern reveals the monoclinic phase of LaVO4 (m-LaVO4). In addition, average grain size and lattice parameters were also calculated. Fourier transform infrared (FT-IR) analysis confirms the presence of La–O and V–O bonds in the sample. Optical property of m-LaVO4 nanoplates was estimated by DRS UV–visible and photoluminescence spectroscopy. HR-TEM (high resolution-transmission electron microscopy) analysis predicts the formation of LaVO4 nanoplates. Furthermore, m-LaVO4 nanoparticles were utilized as photocatalyst for the photodegradation of methylene blue (MB) dye under visible light illumination. m-LaVO4 photocatalyst showed substantial efficiency for the photodegradation of textile effluent (TE) within 120 min of visible light irradiation.  相似文献   

3.
The present paper deals with the synthesis of Mn3O4/MgO nanocomposite through a simple sol–gel route and their electrical and magnetic properties are discussed for electrode applications. The grain size and particle morphology of the synthesized nanocomposite are characterized using XRD and HRSEM. The elemental compositions of the synthesized samples were analyzed using EDAX spectra. The dielectric constant, dielectric loss and AC conductivity of the synthesized samples were studied in the frequency range of 100 Hz–5 MHz at different temperatures (303–573 K) using impedance spectra. The activation energy was calculated using Arrhenius plot. The vibrating sample magnetometry (VSM) study shows that the nanocomposites are found to be paramagnetic at room temperature.  相似文献   

4.
A magnetic Cu/CuFe2O4 nanocomposite was synthesized by a facile one-pot solvothermal method and characterized as an excellent Fenton-like catalyst for methylene blue (MB) degradation. The content of zero-valent copper (Cu0) in Cu/CuFe2O4 composite could be simply controlled by changing the dosage of sodium acetate in the synthetic process, and the Fenton-like catalytic performance of Cu/CuFe2O4 composite enhanced with increasing the Cu0 content. In the presence of H2O2 (15 mM), the as-synthesized 3-Cu/CuFe2O4 nanocomposite could remove 99% of MB (50 mg/L) after only 4 min at pH 2.50, greatly higher than that of pure CuFe2O4 and Cu0 under the same condition. The enhancement activity of Cu/CuFe2O4 nanocomposite was due to the synergistic effect between Cu0 and CuFe2O4. The radical capture experiments and coumarin fluorescent probe technique confirmed that MB was degraded mainly by the attack of OH· radicals in Cu/CuFe2O4–H2O2 system.  相似文献   

5.
Methylene blue (MB) is a representative of a class of dyestuffs resistant to biodegradation. This paper presents a novel photocatalytic degradation of MB by La0.2Sr0.7Fe12O19 compound, which is a traditional permanent magnet and displays a large magnetic hysteresis (M–H) loop. The remnant magnetic moment and coercive field are determined to be 52 emu/g and 5876 Oe, respectively. UV–Visible optical spectroscopy reveals that La0.2Sr0.7Fe12O19 is simultaneously a semiconductor, whose direct and indirect band gap energies are determined to be 1.47 and 0.88 eV, respectively. The near infrared band gap makes it a good candidate to harvest sunlight for photocatalytic reaction or solar cell devices. This magnetic compound demonstrates excellent photocatalytic activity on degradation of MB under visible illumination. The colour of MB dispersion solution changes from deep blue to pale white and the absorbance decreases rapidly from 1.8 down to zero when the illumination duration extends to 6 h. Five absorption bands did not make any blue shifts along with the reaction time, suggesting a one-stepwise degradation process of MB, which makes La0.2Sr0.7Fe12O19 a unique magnetic catalyst and differs from TiO2 and other conventional catalysts.  相似文献   

6.
In this study, bare Mn3O4 and Neodymium (Nd)-doped Mn3O4 were prepared via a facile hydrothermal strategy. These materials were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, UV spectroscopy, X-ray photoelectron spectroscopy, and the Brunauer–Emmett–Teller (BET) method. XRD pattern displays that the particles were well crystallized and corresponds to a spinel structure of Mn3O4. The BET specific surface area and pore volume of mesoporous Mn3O4 greatly exceeds that of Nd-doped Mn3O4 samples. The sonophotocatalytic activity of Nd-doped Mn3O4 nanoparticles was evaluated by monitoring the decolorization of Reactive Red 43 in aqueous solution under sono-photocatalytic process. 4% Nd-doped Mn3O4 nanoparticles showed the highest decolorization efficiency among the different amounts of dopant agent used. The Nd-doped Mn3O4 could be a promising candidate material for high-capacity, low-cost, and environmentally friendly catalyst for wastewater remediation.  相似文献   

7.
This paper proposes a facile two-step hydrothermal route for the synthesis of maghemite (γ-Fe2O3) nanocrystals. The synthesis route included two steps: (i) hydrothermal synthesis of Fe3O4 nanocrystals, and (ii) hydrothermal oxidation of the Fe3O4 nanocrystals to their γ-Fe2O3 counterpart. Phase transition from γ-Fe2O3 to hematite was studied by in situ XRD; the γ-Fe2O3 nanocrystals exhibited enhanced phase transition temperature (>600 °C). The magnetization curves revealed that the γ-Fe2O3 nanocrystals showed ferromagnetic behavior with high saturation magnetization of 68 emu/g at room temperature.  相似文献   

8.
XRD-pure Li4Mn5O12 spinels are obtained below 600 °C from oxalate and acetate precursors. The morphology consists of nanometric particles (about 25 nm) with a narrow particle size distribution. HRTEM and electron paramagnetic resonance (EPR) spectroscopy of Mn4+ are employed for local structure analysis. The HRTEM images recorded on nano-domains in Li4Mn5O12 reveal its complex structure. HRTEM shows one-dimensional structure images, which are compatible with the (111) plane of the cubic spinel structure and the (001) plane of monoclinic Li2MnO3. For Li4Mn5O12 compositions annealed between 400 and 800 °C, EPR spectroscopy shows the appearance of two types of Mn4+ ions having different metal environments: (i) Mn4+ ions surrounded by Li+ and Mn4+ and (ii) Mn4+ ions in Mn4+-rich environment. The composition of the Li+, Mn4+-shell around Mn4+ mimics the local environment of Mn4+ in monoclinic Li2MnO3, while the Mn4+-rich environment is related with that of the spinel phase. The structure of XRD-pure Li4Mn5O12 comprises nano-domains with a Li2MnO3-like and a Li4/3−x Mn5/3+x O4 composition rather than a single spinel phase with Li in tetrahedral and Li1/3Mn5/3 in octahedral spinel sites. The annealing of Li4Mn5O12 at temperature higher than 600 °C leads to its decomposition into monoclinic Li2MnO3 and spinel Li4/3−x Mn5/3+x O4.  相似文献   

9.
K4Nb6O17 nano-layered compound was obtained by solid-phase synthesis and then methylene blue (MB) was intercalated into layered niobate K4Nb6O17 interlayer I by a two-step guest-guest exchange method using the intercalation compound, methyl viologen (MV2+)–K4Nb6O17, as precursor. The optically transparent MB+–K4Nb6O17 nanocomposite thin film has been characterized by XRD, IR, TGA, elemental analysis, UV, and electrochemical measurements. It was estimated that the intercalated MB+ ions are mainly aggregated. The cyclic voltammogram of the MB+–K4Nb6O17 nanocomposite thin film exhibited a fine diffusion-controlled cathodic process, which hints the possibility of being utilized as an electrode modifying material.  相似文献   

10.
An efficient,controllable,and facile two-step synthetic strategy to prepare graphene-based nanocomposites is proposed.A series of Fe3O4-decorated reduced graphene oxide (Fe3O4@RGO) nanocomposites incorporating Fe3O4 nanocrystals of various sizes were prepared by an ethanothermal method using graphene oxide (GO) and monodisperse Fe3O4 nanocrystals with diameters ranging from 4 to 10 nm.The morphologies and microstructures of the as-prepared composites were characterized by X-ray diffraction,Raman spectroscopy,nitrogen adsorption measurements,and transmission electron microscopy.The results show that GO can be reduced to graphene during the ethanothermal process,and that the Fe3O4 nanocrystals are well dispersed on the graphene sheets generated in the process.The analysis of the electrochemical properties of the Fe3O4@RGO materials shows that nanocomposites prepared with Fe3O4 nanocrystals of different sizes exhibit different electrochemical performances.Among all samples,Fe3O4@RGO prepared with Fe3O4 nanocrystals of 6 nm diameter possessed the highest specific capacitance of 481 F/g at 1 A/g,highlighting the excellent capability of this material.This work illustrates a promising route to develop graphene-based nanocomposite materials with a wide range of potential applications.  相似文献   

11.
A quick and facile microwave method has been employed to prepare Mn3O4/worm-like mesoporous carbon (Mn3O4–MC) composites. Structural and morphological characterizations of worm-like mesoporous carbon and Mn3O4–MC composites have been carried out using X-ray diffraction, transmission electron microscopy, N2 adsorption–desorption, and electrochemical measurement. Cyclic voltammograms demonstrate that the Mn3O4–MC composites perform improved capacitive behavior at the range of −0.8~0.2 V (vs. Hg/HgO electrode) with reversibility. The Mn3O4–MC composite electrode possesses an enhanced specific capacitance of 266 F g−1 at a sweep rate of 1 mV s−1.  相似文献   

12.
The SrFe12O19/SiO2/TiO2 nanostructures with hard magnetic core were successfully synthesized through the facile and efficient wet chemical processes. At first, nanocrystalline strontium hexaferrite (SrFe12O19) powder was prepared using a new co-precipitation route in ethanol/water media. In the next step, SrFe12O19/SiO2 composites were produced by well-known Stöber method using tetraethyl orthosilicate as precursor. Finally titania was coated on SrFe12O19/SiO2 composite particles using titanium n-butoxide precursor. The core/shell/shell nanostructures have been characterized by means of X-ray diffraction, vibrating sample magnetometer, Fourier transform infrared spectra, field emission scanning electron microscopy, and transmission electron microscopy equipped with an energy-dispersive X-ray spectroscopy detector. The catalytic activity of SrFe12O19/SiO2/TiO2 composites has been investigated in the degradation of methylene blue dye under UV illumination. The results indicated that the obtained SrFe12O19/SiO2/TiO2 composite has photo-catalytic properties and can be retrieved by magnetic separation. The photo-degradation of methylene blue dye was about 80% in the presence of photo-catalyst powder at irradiation time of 180 min. Recycled composite particles could be used again.  相似文献   

13.
This paper demonstrates the preparation of pure TiO2, 40% of Bi2O3 in TiO2 and Ag loaded Bi2O3/TiO2 nanocomposites by the hydrothermal method followed by the photoreduction process. The crystal structure, morphology and composition of the samples were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy respectively. The dispersion of Ag nanoparticles on the surface of Bi2O3/TiO2 nanocomposites are found to bring the conduction band near to the valence band, resulting in the narrow band gap compared to pure TiO2 and Bi2O3/TiO2 nanocomposites. The XRD analysis demonstrated that silver nanoparticles were dispersed finely on the surface of Bi2O3/TiO2 nanocomposites. All the characterization results revealed that the Ag/Bi2O3/TiO2 nanocomposites were smaller crystallite size, stronger absorbance in the visible region and greater surface area than pure TiO2 and Bi2O3/TiO2 nanocomposites. The photoluminescence intensity decreases with an increase in the UV-illumination time of Ag loaded Bi2O3/TiO2 revealing a decrease in the recombination rate of electron–hole pairs. In order to test them as a photocatalyst, methyl orange was used as a standard. The photocatalytic degradation of methyl orange shows that the ABT5 sample exhibits the maximum degradation efficiency of 99% within 180 min of irradiation.  相似文献   

14.
A simple and quick microwave method to prepare high performance magnetite nanoparticles (Fe3O4 NPs) directly from Fe has been developed. The as-prepared Fe3O4 NPs product was fully characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The results show that the as-prepared Fe3O4 NPs are quite monodisperse with an average core size of 80 × 5 nm. The microwave synthesis technique can be easily modified to prepare Fe3O4/Ag NPs and these NPs possess good magnetic properties. The formation mechanisms of the NPs are also discussed. Our proposed synthesis procedure is quick and simple, and shows potential for large-scale production and applications for catalysis and biomedical/biological uses.  相似文献   

15.
The C3N4/ZnO composite photocatalysts were synthesized by mechanical milling combined with a calcination process. Various ratios of melamine and ZnO powders were milled by a planetary ball mill for 10 h. After heating at 540°C for 3 h in air, melamine was converted to C3N4 but the formation of C3N4 depended on the ratios of the melamine and ZnO (M/Z) powders. From the experimental results, the conversion of melamine to C3N4 could be inhibited by ZnO particles; as there was no detectable C3N4 in the sample at low M/Z values or high ZnO contents. The photocatalytic activities of prepared samples were investigated under the illumination of blacklight and fluorescent lamps as the low wattage light source. The C3N4 /ZnO showed a better photocatalytic activity than ZnO to degrade a methylene blue (MB) dye solution using blacklight lamps, but there is no significant difference in photocatalytic activities between ZnO and prepared C3N4/ZnO under visible light by the fluorescent lamps. However, the prepared C3N4/ZnO can well function under illumination by Xe lamp as the high power light source. Ecotoxicities of MB solutions before and after photocatalytic process were also studied through growth inhibition of the alga Chlorella vulgaris.  相似文献   

16.
Polycrystalline samples of undoped, terbium-doped (CdB4O7:Tb3+), and manganese-doped (CdB4O7:Mn2+) cadmium tetraborate have been prepared by solid-state reactions at 850°C. Using differential scanning calorimetry and X-ray diffraction, we have determined the melting point of CdB4O7 (t m = 976°C) and shown that this compound melts incongruently. The observed monotonic decrease in the orthorhombic cell parameters of the doped materials indicates the formation of substitutional solid solutions (sp. gr. Pbca). The thermoluminescence intensity of the doped materials has been shown to depend on the nature and concentration of the activators and the irradiation time.  相似文献   

17.
CaCu3Ti4O12 (CCTO) was synthesized and sintered by microwave processing at 2·45 GHz, 1·1 kW. The optimum calcination temperature using microwave heating was determined to be 950°C for 20 min to obtain cubic CCTO powders. The microwave processed powders were sintered to 94% density at 1000°C/60 min. The microstructural studies carried out on these ceramics revealed the grain size to be in the range 1–7 μm. The dielectric constants for the microwave sintered (1000°C/60 min) ceramics were found to vary from 11000–7700 in the 100 Hz–00 kHz frequency range. Interestingly the dielectric loss had lower values than those sintered by conventional sintering routes and decreases with increase in frequency.  相似文献   

18.
Monodisperse Fe3O4 nanoparticles with narrow size distribution could be successfully synthesized in large quantities by a facile solvothermal synthetic method in the presence of oleic acid and oleylamine. Well-defined assembly of uniform nanoparticles with average sizes of 8 nm can be obtained without a further size-selection process. The sizes of final products could be readily tuned from 5 to 12 nm by adjusting the experimental parameters such as reaction time, temperature, and surfactants. The phase structures, morphologies, and magnetic properties of the as-prepared products were investigated in detail by X-ray diffraction, transmission electron microscopy, selected area electron diffraction, high-resolution transmission electron microscopy, and magnetometry with a superconducting quantum interference device. The magnetic study reveals that the as-synthesized nanoparticles are ferromagnetic at 2 K while they are superparamagnetic at 300 K.  相似文献   

19.
Polycrystalline samples of mixed composites of Ni0.93Co0.02Mn0.05Fe2O4 + BaTiO3 were prepared by conventional double sintering ceramic method. The phase analysis was carried out by using X-ray diffraction technique. Variation of dc resistivity and thermo emf was studied as a function of temperature. AC conductivity (σac) was investigated in the frequency range 100 Hz–1 MHz. The loss tangent (tan δ) measurements conclude that the conduction mechanism in these samples is due to small polaron hopping. The magnetoelectric conversion factor, i.e. dc(ME) H was studied as a function of intensity of magnetic field and the maximum value 407 μV/cm/Oe was observed at a field of 0.8 kOe in a composite with 85% BaTiO3 and 15% Ni0.93Co0.02Mn0.05Fe2O4 phase.  相似文献   

20.
We have studied the magnetic properties of the new compound Er2Mn2/3Re4/3O7 prepared by reacting Er3ReO8, ReO2, MnO, and metallic Re at 1020°C in silica tubes sealed off under vacuum. The compound is shown to have the zirkelite structure with hexagonal cell parameters a = 7.3174(6) Å and c = 17.365(1) Å (sp. gr. P31211, Z = 6). Magnetization data obtained in the range 2–300 K demonstrate that, above ~150 K, its magnetic susceptibility exhibits Curie-Weiss behavior with an effective magnetic moment of 9.50μB. Dynamic magnetic susceptibility measurements point to spin-glass behavior of this compound at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号