共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
DSP视频监控中运动目标检测方法研究 总被引:1,自引:0,他引:1
对高斯模型的更新做出改进,以找到一种快速、有效的、适合DSP运算的算法.高斯模型的参数对背景模型判别产生的影响是不同的,因此它们的更新对于背景模型判别产生的影响也是不相同的.学习率直接影响模型参数的更新,如果对所有参数采用同一学习率,当学习率取值比较大,适应环境变化能力强,但容易受噪声影响,不够稳定;当学习率取的比较小,适应环境变化的能力就低,但是具有鲁棒性.利用均值和方差对背景模型判别影响不同这一特性,对均值和方差的更新采用不同的学习率,在保持可行的算法复杂度的情况下,使背景模型能够适应背景的变化. 相似文献
3.
4.
智能视频监控中运动目标检测的研究 总被引:1,自引:0,他引:1
针对某武器试验中背景复杂,现有的背景差分法在背景模型的维持和更新不能用于长期和复杂的场景,以及对近地目标提取检测困难的问题,提出一种改进的背景差分法。该算法采用结合邻域信息的背景差分法和最大方差阈值法,能够在一定程度上减小背景滞后更新引起的运动目标检测误差,且使目标边缘提取更加明确,从而提高了系统的运行速度,实现复杂背景下的运动目标检测。在Visual C++6.0中用OpenCV实现了相关算法的设计,并给出了完成系统任务所需的部分关键代码,实现了运动目标和试验场景的分离与提取。仿真实验验证了该算法的有效性以及实时性。 相似文献
5.
《工矿自动化》2016,(4):31-36
针对煤矿智能视频监控环境存在各种复杂动态场景变化的情况,研究了运动目标检测中的3个重要环节:背景建模与更新、前景检测和运动阴影检测与去除。针对这3个环节,提出了相应的处理方法:基于IFCM聚类算法的自适应背景建模与更新方法,对像素灰度取值进行无监督聚类,自适应选取不同个数的聚类构建各像素背景模型,随场景变化进行聚类修改、添加和删除以完成背景自动更新;联合背景差分信息、三帧差分信息和空间邻域信息的前景检测方法,据此获得较为准确的前景目标;运动阴影检测与去除方法,依据在阴影覆盖前后的灰度图像中,像素具有亮度值相关性和纹理特征值不变性,实现了运动阴影的检测与去除。实验结果验证了本文所提方法的有效性和优越性。 相似文献
6.
高斯混合模型已经成为对视频利用背景减除法进行运动目标检测的最多的一种背景建模模型,也成为一种标准模型。首先对高斯混合模型的理论框架进行了分析,然后采用OpenCV技术实现高斯混合模型来检测视频运动目标,实验结果表明高斯混合模型对摄像头静止的道路监控视频运动目标检测具有较好的效果。最后以该运动目标检测技术为基础设计了一种智能视频监控系统,该系统具有较好的实用性。 相似文献
7.
基于运动目标轨迹优化的监控视频浓缩方法 总被引:1,自引:0,他引:1
视频浓缩是包含原视频有效信息的简短表示,以便于视频的存储、浏览和检索。然而,大部分视频浓缩方法得到的浓缩视频中会丢失少量目标,不能完整表达原始视频的全部内容。本文介绍了一种基于目标轨迹优化的视频浓缩方法。首先使用改进的目标轨迹提取算法提取原视频中目标的
轨迹,然后利用马尔可夫随机场模型和松弛线性规划算法得到每条轨迹的最优时间标签,将其与背景序列和目标轨迹结合生成浓缩视频。实验结果表明,与传统的视频浓缩方法相比,本文方法生成的浓缩视频具有较高的浓缩比,保证了信息的完整性又具有良好的视觉效果。 相似文献
8.
9.
本文对于智能视频监控中的运动目标检测技术进行了讨论,介绍了几种常用算法。并且,提出了一种自定义防区的方法,来提高检测效率,降低干扰。 相似文献
10.
人体目标检测对社会治理和城市安全具有很重要的现实意义,监控数据是数据安全的重要来源.小 目标检测是目前受到广泛关注的安全检测问题中一项具有挑战性的任务,其检测对象为大型图像中少于20个像素的目标.小目标的特征难以表征,其中一个主要挑战是,用于预训练/共同训练检测器的数据集(如COCO)与用于微调检测器的数据集(如TinyPerson)之间存在尺度不匹配的情况,这给小目标检测器的性能带来了负面影响.为了解决这个问题,文中提出了一种优化策略,用于匹配不同数据集的尺度,称其为尺度分布搜索(Scale Distribution Search,SDS),同时平衡图片的信息收益(数据集之间的尺度相近)和信息损失(信噪比(SNR)的降低).该策略使用高斯模型对数据集中目标的尺度分布进行建模,通过迭代的方式寻找最优分布参数;并对比数据集中目标的特征分布和检测器的性能,以找到最佳的尺度分布.通过SDS策略,主流目标检测方法在TinyPerson上实现了更好的性能,证明了SDS策略在提升预训练/共同训练效率上的有效性. 相似文献
11.
基于动目标检测的视频监控智能节点设计 总被引:1,自引:0,他引:1
针对现有视频监控系统无效信息多造成存储资源严重浪费的现象,提出了基于动目标检测的视频监控智能节点设计方案;利用微波移动传感器检测运动目标多普勒信号,通过微控器采集调理后的多普勒信号完成运动目标识别,并控制传输设备将含有动目标的视频监控信息和多普勒频率数据传输到监控中心进行实时处理;实验结果表明,视频监控智能节点最大探测距离可达15m,该设计有效提高了视频监控的有效信息,减少了存储资源,具有广泛的应用前景。 相似文献
12.
13.
杨杰 《单片机与嵌入式系统应用》2022,22(2):46-50
针对工业控制中智能视频的应用,本文研究了基于SOPC的智能视频在工业控制中目标检测与跟踪系统,本系统包含四个模块:图像采集模块、存储模块、目标检测跟踪模块和VGA显示模块,可以完成视频中图像的采集与处理、目标的检测与跟踪和显示等功能,实现了运动目标检测与跟踪的准确性和实时性.实验结果显示,本研究在运动目标的跟踪时偏移度... 相似文献
14.
在室外环境中,可见光相机可以获取场景中丰富的纹理细节和光谱信息,但受光照变化的影响很大;而热红外相机对光照变化不敏感,但热红外成像对比度低、颜色信息缺失。为了充分利用两者的互补信息,实现运动目标的精确检测,同时提高检测的鲁棒性,提出了一种应用RGBT混合高斯模型的目标检测方法。该方法将热红外图像作为第4个分量加入到传统的混合高斯模型中,提高了算法的正检率;还引入了阴影去除算法,增强了算法的鲁棒性。实验表明,该方法比传统的混合高斯模型检测精度更高,目标更完整,同时也能较好地满足实时性的要求。 相似文献
15.
本文针对智能视频监控中的物体遗留事件检测进行了研究,给出了一套完整的检测方案。多高斯模型用于运动目标检测,其自适应性很好地解决了背景帧不断变化所带来的影响;MeanShift算法用于运动目标的跟踪,使得监控对象不再限于固定区域;目标的七阶不变矩可以很好地描述目标特征,利用这一特征通过支持向量机对目标进行识别。实验结果证明了本文方法的有效性。 相似文献
16.
运动目标检测是实现目标跟踪和行为分析等任务的基础。在运动目标检测中,消除背景与噪声的干扰,从而将运动目标从图像中分离出来一直是研究的重点。混合高斯模型法被广泛地应用于运动目标检测,对存在小幅度运动的背景有较好的抗干扰能力,并且能提取出较完整的运动目标,但是同时存在噪声干扰,且对阴影抑制效果较差。针对传统混合高斯模型法的不足,提出一种改进的基于混合高斯模型的运动目标检测算法,利用帧差法对光照突变适应性较好和算法简单的特点,将传统混合高斯模型法与和四帧差法结合。实验结果表明,该方法能够有效地消除复杂环境中的噪声,并对阴影有一定的抑制作用,提高了运动目标检测的准确性和完整性。 相似文献
17.
运动目标检测是实现目标跟踪、视频监控的基础.针对基于高斯混合模型的运动目标检测算法的不足,提出了一种基于分块思想和高斯模型个数自适应的改进高斯混合算法.利用对视频图像分块的思想,在提高目标检测效率的同时,实现对视频的滤波处理;并利用高斯混合模型中高斯分布个数自适应操作来降低算法复杂度,提高运动目标检测的速度.实验结果表明:该算法比传统高斯混合模型运动目标检测算法具有更快的检测速度和更好的检测效果,并降低了检测噪声,能有效地检测运动目标,适用于运动目标的实时检测. 相似文献