首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Superhydrophobic coatings have large application potential in self-cleaning textiles. Low durability, high cost of fabrication, and environmental concerns over the usage of chemicals such as fluorocarbons limit the utilization of superhydrophobic coatings. This study reports a convenient and inexpensive approach to fabricate robust and fluorine-free superhydrophobic fabrics based on the transfer of structured polymer films and hydrophobic nanoparticles. In this approach, polydimethylsiloxane (PDMS) is infused between sheets of fabric and paper, followed by curing and removal of the paper. This process results in a fabric infused with PDMS whose structure is a negative replica of the paper surface. Then, hydrophobic nanoparticles are sprayed onto the structured PDMS side of the fabric. The infusion of PDMS and subsequent deposition of the hydrophobic nanoparticles enables strong bonding, as shown by the excellent solvent stability of the superhydrophobic fabric under ultrasonication. The proposed approach is universal in that it can be applied to almost any textiles, which upon coating, exhibited superhydrophobicity with a water contact angle of 172° and a sliding angle of 3°. Furthermore, the superhydrophobic fabric showed robust durability against water spray impact and mechanical bending where it can keep superhydrophobicity for at least 200 cycles of each test.  相似文献   

2.
A durable and environmentally-friendly superhydrophobic coatings for liquid-food residue reduction were prepared by using stearic acid (SA) modified organic montmorillonite (SA@OMMT) and poly(dimethylsiloxane) (PDMS). Due to the natural hydrophobicity of SAs, SA@OMMT provides low surface energy as well as roughness for the coating. PDMS not only provided low surface energy in the coating but also contributed to the bonding of SA@OMMT as a result of its high adhesive properties. In addition, PDMS has good physical properties after curing, which can effectively improve the physical properties and durability of a superhydrophobic coating by the self-assembly method using a PDMS/n-hexane solution. For 1 wt.% SA@OMMT and 5 wt.% PDMS, the resulting SA@OMMT/PDMS (SOP) coating showed the water contact angle (WCA) and water sliding angle (WSA) of 156.3°and 2°, respectively. The prepared coatings have good physical and chemical stability, and they still have superhydrophobicity after physical abrasion tests and exposure to the corrosion solutions. In the meanwhile, the prepared coating also has flexibility and superhydrophobicity after bending and folding. Finally, the coating surface shows highly effective antifouling ability to liquid and solid pollutants. The coating can be applied against different substrates and has potential application in the field of liquid-food residue reduction.  相似文献   

3.
Water repellent SiO2 particulate coatings were prepared by a one-step introduction of vinyl groups on the coating surface. Rough surface structure and low surface energy could be directly obtained. Vinyl functionalized SiO2 (vinyl-SiO2) spheres with average diameter of 500 nm were first synthesized by a sol–gel method in aqueous solution using vinyltriethoxysilane as the precursor. The multilayer SiO2 coating fabricated by dip-coating method was highly hydrophobic with a water contact angle of 145.7° ± 2.3°. The superhydrophobic SiO2 coating with a water contact angle up to 158° ± 1.7° was prepared by spraying an alcohol mixture suspension of the vinyl-SiO2 spheres on the glass substrate. In addition, the superhydrophobic SiO2 coating demonstrated good stability under the acidic condition. However, it lost its hydrophobicity above 200°C because of the oxidation and degradation of vinyl groups.  相似文献   

4.
This study successfully developed a simple spray approach to fabricate a robust highly amphiphobic poly(phenylene sulfide) (PPS)/fluorinated ethylene propylene (FEP)/poly(dimethylsiloxane) (PDMS) composite coating with high-performance in corrosion-resistance, wear-durable through designing the nano/micro two-tier roughness and fluorinating with materials of the low surface free energy. The highly amphiphobic and tribological properties of the coatings were measured by the contact angle meter and the pin-on-disc tribometer, respectively. It was interested to observe that the composite coating showed superhydrophobic and highly oleophobic simultaneously, with the highest contact angles of water, glycerine and ethylene glycol up to 173 ± 2.1°, 142 ± 2.2° and 139 ± 2.1°, respectively. Moreover, the surfaces of the PPS/FEP composite coatings were investigated by means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD) and energy-dispersive X-ray spectroscopic (EDS). The robust highly amphiphobic coating also showed remarkable durability against strong acid and strong alkali in the pH range from 1 to 14. After 47 h sliding wear test, no failure sign on the PPS/45%FEP/PDMS composite coating was observed. Such unique characteristics were attributed to the synergistic effect of the nano/micro two-tier roughness and fluorinating with low surface free energy groups (–CF2–, –CF3–).  相似文献   

5.
In this work, a flower clusters-like superhydrophobic surface was fabricated via an ultraviolet (UV) curable coating of octadecylamine (ODA) and vinyl-terminated polydimethylsiloxane (V-PDMS). ODA self-assembled into many flower clusters-like structures on the surface of the coating, increasing the roughness of the coating surface without additional nanoparticles. V-PDMS formed a highly crosslinked network under a UV lamp, which would be helpful for a robust superhydrophobic surface. The obtained PDMS/ODA fabric showed water contact angle of 161° and sliding angle of 5°. The durability of the superhydrophobic surface was tested by water impacting, tube brush scrubbing, knife scratching, hand twisting, finger pressing, tape adhesion, abrasion, continuous rinsing, and chemical conditions. The experimental results indicated that the superhydrophobic surface have good durability for long service life. Moreover, the PDMS/ODA fabric could selectively absorb oils from water with good separation performance. This work will provide a facile, low cost, and versatile method to prepare superhydrophobic surfaces, and enhance their efficiency of oil–water separation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48210.  相似文献   

6.
《Ceramics International》2023,49(20):33020-33028
An active @ passive anti-icing surface coating was successfully prepared using graphene&SiO2 hybrid structure toward photothermal superhydrophobic performance. The coating consists of polydimethylsiloxane (PDMS) with E51 epoxy resin linked to fumed silica (nano-SiO2) to provide a multistage rough structure and graphene as the primary photothermal nanoparticle for various surface anti-freeze application. The surface morphology of this photothermal superhydrophobic coating is validated to be as a uniformly rough cauliflower structure with a large number of “air valley”. More importantly, the addition of 0.2 g graphene could exhibit the best photothermal effect (2 sun ( 200 mW/cm2), stable average temperature of 49.56 °C) along with superhydrophobic effect (162.2°), excellent chemical stability properties. In order to improve the organic-inorganic interfacial bonding and the mechanical durability of photothermal superhydrophobic coatings, using micro-arc oxidation technology to establish the microporous structure on the surface of substrate for exerting interlocking effect, after pushing and pulling under applied load of 300 g for 200 cm, the outstanding wear resistance of the composite coating was verified. Thanks to the interlocking effect, the excellent superhydrophobic properties provided by the construction of the typical Cassie-Baxter model of the surface and the use of multiple layers of graphene increasing the probability of π-π* electron leap, the multi-stage photothermal superhydrophobic composite coating is able to show a long-lasting anti-icing and de-icing effect.  相似文献   

7.
A superhydrophobic cyclic olefin copolymer (COC) nanocomposite coating was produced with a very simple and easy method. Self-cleaning superhydrophobic COC surfaces were obtained by only adding surface hydrophobized SiO2 nanoparticles by dip coating method. The influence of concentration of SiO2 and the coating temperatures on the wettability of the surfaces were investigated. The surface wettability of the coatings was examined with the contact angle measurements and the surface roughness and morphology were analyzed by using atomic force microscope and scanning electron microscopy analysis. Surfaces with certain amounts of COC and SiO2 showed superhydrophobic character with high water contact angle of 1690. Also, the obtained superhydrophobic surfaces show superior water repellent, high transparency, and self-cleaning characteristics.  相似文献   

8.
In this paper, the effect of titania particles preparation on the properties of Ni–TiO2 electrocomposite coatings has been addressed. Titania particles were prepared by precipitation method using titanium tetrachloride as the precursor. The titanyl hydroxide precipitate was subjected to two different calcinations temperatures (400 and 900 °C) to obtain anatase and rutile titania particles. These particles along with commercial anatase titania particles were separately dispersed in nickel sulfamate bath and electrodeposited under identical electroplating conditions to obtain composite coatings. The electrodeposited coatings were evaluated for their microhardness, wettability, corrosion resistance, and tribological behavior. The variation of microhardness with current density exhibited a similar trend for all the three composite coatings. The composite coating containing anatase titania particles exhibited higher microhardness and improved wear resistance. However, the corrosion resistance of the composite coating containing commercial titania powder was superior to that of plain nickel, Ni–TiO2 composite coatings containing anatase and rutile titania particles. The poor corrosion resistance of these composite coatings was attributed to the higher surface roughness of the coatings. This problem was alleviated by incorporating ball-milled titania powders. The composite coatings with higher surface roughness were modified with a low surface energy material like fluoroalkyl silane to impart hydrophobic and superhydrophobic properties to the coatings. Among these coatings, Ni–TiO2–9C coating exhibited the highest water contact angle of 157°.  相似文献   

9.
This study introduces a relatively simple technique for the manufacture of superhydrophobic coatings on polymeric surfaces. Plastics such as unplasticized poly(vinyl chloride) (UPVC ) do not have a strong hydrophobic nature that is characterized by their low contact angles. Techniques of both increasing surface roughness and lowering surface energy are required to change their hydrophilicity to superhydrophobicity. In the present study, a coating of a low‐surface‐energy thermoplastic polyurethane (TPU ) was spin‐coated with chemically treated nanosilica to reduce the surface energy of UPVC . Nanosilica particles were embedded on the surface using a hot‐press. Taguchi design was used to optimize multiple processing parameters. Samples spin‐coated with 10 g L?1 nanosilica suspension in ethanol at a rate of 400 rpm for 5 s and then hot‐pressed at 155 °C under 2 atm (203 kPa ) for 4 min had a contact angle of ca 157° and sliding angle of ca 6°, which are characteristic of superhydrophobic surfaces. Atomic force microscopy (AFM) and scanning electron microscopy (SEM ) imaging showed that these superhydrophobic surfaces were highly rough with nanoscale features. Peel test and SEM analysis showed that silica nanoparticles embedded in the TPU coating were more stable than particles immobilized on UPVC sheet without TPU coating, proving that a layer of more flexible coating can improve the longevity of superhydrophobic surfaces manufactured using this facile method. © 2016 Society of Chemical Industry  相似文献   

10.
Traditional insulative coatings usually suffer from pitting corrosion in harsh corrosive environment. Herein, in this work, electroactive polyaniline/carboxylated carbon nanofiber (PANI/CNF) nanocomposite was prepared via in situ chemical polymerization and first incorporated into superhydrophobic coating with better barrier effect. Multilayer coatings were constructed by facial spraying using polyphenylene sulfide (PPS) and ethylene tetrafluoroethylene (ETFE) with gradient weight ratios as film-forming materials. The composite coating with 40 wt% ETFE in top layer (denoted as ETFE-40) possesses best superhydrophobicity and highest oleophobicity with water contact angle (CA) and glycerol CA of 160° and 155° as well as low water sliding angle (SA) and glycerol SA of 2.2° and 8.8°, respectively. The lotus-like nano/micro structures, low surface energy material ETFE and modification of 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS) should contribute to the superior liquid repellency. Especially, robust mechanical strength and durable anti-wettability are obtained with high WCA of 151° and glycerol CA of 147° after 8000 cycles abrasion. The composite coating also exhibits strong adhesion and superior self-cleaning. The enhanced electrochemical corrosion resistance of the coating in 3.5 wt% NaCl solution can be attributed to the outstanding barrier function of superhydrophobic surface and the passivation effect of electroactive PANI/CNF. This novel and effective coating system would definitely benefit the development of robust protective coating and promise wider engineering application.  相似文献   

11.
Superhydrophobic and high oleophobic PPS-matrix composite coatings with excellent self-cleaning, bending/heat/wear-resistance have been successfully prepared by a simple spray method through designing hierarchical structures and modifying with low surface energy groups in this work. The test results showed that the polyphenylene sulfide (PPS)/ 43 wt.% fluorinated ethylene propylene (FEP)/ polyetheretherketone (PEEK)/ 1 wt.% polydimethylsiloxane (PDMS) composite coatings exhibited superhydrophobic and high oleophobic simultaneously, with the highest contact angles of water, glycerine, ethylene glycol, crude oil and oil-water mixture up to 173 ± 1.5°, 156 ± 1.3°, 153 ± 1.3°, 151 ± 1.3° and 155 ± 1.3°, respectively. The wear life of the coating was recorded to be the longest reaching about 30 h without any surface damage until the wear test is terminated, which was 10 times of the PPS/PEEK coating. The intrinsic brittleness of PPS/PEEK coating can be avoided by the addition of FEP. Moreover, the coating can also keep superhydrophobic after immersing in strong acid and base solutions for 15 days. Under the condition of 200 °C for 1 h, the weight losses of the coatings were less than 3 % of the coating, showing outstanding heat-resistance. Under the condition of dirty, the coating also demonstrated the excellent self-cleaning effect, protecting substrates from pollution in practical applications. It is believed that our research provides a new approach to extending the life span of superhydrophobic coatings for petroleum pipeline.  相似文献   

12.
The present article reports on a simple and convenient method for the fabrication of superhydrophobic surfaces based on silica particles by spraying the as-prepared silica suspension containing silica sol and silica microspheres on the substrate. The morphologies of the silica particulate coatings could be controlled by varying the silica microsphere concentration. The silica particulate coatings as prepared were exceptionally rough and superhydrophilic, with water contact angles less than 5°. The surface silanol groups of the hydrophilic coatings could be functionalized using 1H,1H,2H,2H-perfluorodecyltriethoxysilane to form hydrophobic groups. The resulting surface showed excellent superhydrophobic property with water contact angle up to 165.6 ± 0.9° and sliding angle of 3.5 ± 0.4°. In addition, the superhydrophobicity of the coating possessed a good stability after 3 months of exposure in air for a wide range of pH values.  相似文献   

13.
Superhydrophobic surfaces can be obtained by tailoring both the chemistry and roughness topography, mimicking the Lotus leaf characteristics. Most of the synthetic superhydrophobic surfaces reported have been composed of micro and nanoparticles (NPs) embedded in polymer‐based coatings. The particles which tailor the topography are bonded to the base polymers by weak secondary forces. Consequently, the topography integrity is highly affected by handling and surface drag making them unsuitable for long term applications. This work is focused on promoting covalent bonding between the NPs and the base polymer to obtain durable superhydrophobic surfaces. The rough topography was achieved by ultraviolet (UV) curing of SiO2 NPs containing a photoreactive benzophenone moiety in addition to methylated fumed silica NPs which can bind covalently to the polymer base coating, on UV radiation. The hydrophobic chemistry was obtained by fluoroalkylsilane top coating. Coating durability was evaluated using surface air drag and accelerated weathering conditions (UV radiation, humidity and temperature). Results indicated that the proposed approach resulted in superhydrophobic surfaces having high contact angle (>150°) and low sliding angle (<10°) with improved long term durability. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41122.  相似文献   

14.
The aim of this study is to fabricate a superhydrophobic antireflective (AR) coating that can be deposited on the covering of a solar cell system. First, AR coatings were synthesized on glass substrates with an average transmittance over 96% by layer-by-layer deposition of polyelectrolyte. Superhydrophobic sol gel was prepared by hydrolyzing tetraethoxysilane and then reacting it with hexamethyldisilazane. The sol gel, aged at 20°C for 96 h, was used to spin-coat a superhydrophobic film with a water contact angle of 163° and a transmittance of ~91%. The superhydrophobic sol gel was spin-coated on the top of an AR coating to form a superhydrophobic AR coating on a glass substrate. The average transmittance, advancing contact angle, and contact angle hysteresis of the superhydrophobic AR coating, which was spin-coated from sol gel aged for 96 h or 168 h, were 94.5 ± 0.7%, 154.0° ± 1.5°, and 15.4° ± 0.3° or 96.4 ± 0.2%, 158.4° ± 4.4°, and 1.8° ± 0.3°, respectively. Strategies for obtaining a superhydrophobic AR coating are discussed herein.  相似文献   

15.
《Ceramics International》2020,46(2):1652-1661
TiO2 Nanoparticle/Trimethoxy(propyl)silane (TMPSi) ceramic composite coating was deposited on 316L steel using a one-step electrophoretic deposition (EPD) method. Silane coupling agent (TMPSi) was added to the EPD bath in different concentrations (from 0.5 to 15 vol %) to decrease the surface energy of the deposited coating. TiO2 coating is hydrophilic whereas by adding varying concentrations of TMPSi, the obtained nanocomposite coating showed much better hydrophobicity. Surface wettability was measured by water contact angle (WCA) and sliding angle (SA) tests. Moreover, the effect of TMPSi concentration was determined by comparing the WCA and SA values. Surface morphology was studied through Field Emission Scanning Electron Microscopy (FESEM), and the presence of micro/nano meter roughness on the surface was confirmed. The distribution of elements were investigated by EDS analysis in which their uniform dispersion was observed. Corrosion behavior of 316L samples before and after the coating process was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests in 3.5 wt % NaCl solution. The polarization curve proved that the superhydrophobic ceramic nanocomposite coatings (WCA = 168° and SA = 3.1°) were able to decrease the corrosion rate of bare 316L (from 12.180 to 5.621 (μm per year)).  相似文献   

16.
A superhydrophobic coating was synthesized by in-situ reaction of fumed silica nanoparticles and a co-precursor which contains methyltrimethoxysilane (MTMS), propyltrimethoxysilane (PTMS), and diphenyldimethoxysilane (DPDS). The superhydrophobic surface was achieved by the spray of above mixtures on the substrates. Micro/nano structure of the surface was controlled by the silica nanoparticles. The wetting behavior of the surface was enhanced after coated and obtained a maximum 154o static water contact angle and a minimum 1o sliding angle. The surface retained its superhydrophobicity as well as good corrosive resistance and adhesion at a high temperature of 460?°C. Damage to the superhydrophobic coatings caused by extremely low temperature or mechanical force could be easily repaired through a heat treatment or a new spray.  相似文献   

17.
罗帅帅  古卫乐  操未青  刘雷鹏  胡攀  田键 《精细化工》2023,40(8):1727-1733+1741
利用硬脂酸钠(NaSt)和油酸钠(NaOL)对文石型和方解石型两种CaCO3粉体进行表面改性,将改性的CaCO3粉体与聚二甲基硅氧烷(PDMS)共混,喷涂得到了CaCO3/PDMS基超疏水涂层。采用XRD、SEM、接触角测量仪对改性CaCO3粉体及超疏水涂层进行测试,考察了不同晶型CaCO3用量对涂层疏水性能的影响,并对超疏水涂层的自清洁性及稳定性进行了评价。结果表明,当NaSt和NaOL用量分别为反应体系CaCO3理论生成质量的5%时,CaCO3粉体改性效果最好,所制备的CaCO3/PDMS涂层疏水性最佳。当CaCO3和PDMS质量比为1.5∶1时,CaCO3/PDMS涂层接触角>150°,具有超疏水性。玻璃板涂层表面的亚甲基蓝污染物可以完全随着液滴被冲走,没有残留,且经过500 m L流速5 m/s的水流冲击,接触角仍达140°以上。  相似文献   

18.
In this paper, superhydrophobic ceramic coatings were successfully prepared on stainless steel substrates (S304) by sol–gel method, and the effects of pore content and pH conditions on the corrosion resistance of hydrophobic ceramic coatings were studied. As the porosity increases, the contact angle of the coating increases. Among them, the contact angles of the coatings with 15% and 20% porosity in different pH solutions are all greater than 150°, achieving superhydrophobic surfaces. The contact angle results before and after corrosion show that the solution with a higher pH has a greater damage to the hydrophobicity of the coating. The corrosion resistance of the coatings was evaluated comparatively from polarization curves and electrochemical impedance spectroscopy. As the hydrophobicity improves, the corrosion resistance of the hydrophobic ceramic coating is enhanced. The impedance moduli at .01 Hz of the coating are 1.04 × 103 times (pH 4), .13 × 103 times (pH 7), and .74 × 103 times (pH 10) of the bare steel, respectively. With the increase of pH, the corrosion resistance of hydrophobic ceramic coatings decreases, because OH in the corrosion solution is more easily adsorbed on the surface of the coating, thereby destroying the long hydrophobic chains.  相似文献   

19.
Cauliflower‐like polyaniline (PANI) was successfully prepared using an interfacial polymerization method. By modification with polydimethylsiloxane (PDMS) using chemical vapor deposition method, the surface wettability of cauliflower‐like PANI can be tailored to be superhydrophobic with a water contact angle of 160.4°. The deposition of the low‐surface‐energy silicon coating originated from PDMS pyrolysis on the cauliflower‐like PANI was confirmed by X‐ray photoelectron spectroscopy and Fourier Transform Infrared Spectroscopy. The changes in thermal stability and conductivity of the as‐prepared PANI before and after PDMS treatment were also investigated by thermogravimetric analysis and using a four‐probe method. Compared with nanofiber‐shaped PANI by electrodepositing polymerization, the PDMS‐treated cauliflower‐like PANI has superior surface wettability. Our study may open a new way for fabrication of superhydrophobic surfaces by developing novel nanostructured PANI. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39767.  相似文献   

20.
It has been shown that incorporation of TiO2 nanoparticles into hydrophobic coatings can show self-cleaning performance. Accelerated laboratory testing indicated that the coats retain their hydrophobic nature for an extended time period. In this paper, hydrophobic polydimethylsiloxane (PDMS)/TiO2 nanocomposite coatings with a TiO2 content of 0–40% were fabricated by simple blending of a PDMS dispersion with an aqueous TiO2 nanoparticle dispersion. Their long-term hydrophobicity and self-cleaning performance were investigated both in laboratory and real-world outdoor testing. As expected, TiO2 nanoparticle-based coatings exhibited better self-cleaning relative to the TiO2-free PDMS control coating as measured by methylene blue degradation testing. Excellent long-term hydrophobicity was observed in accelerated weathering testing when they contained the appropriate levels of TiO2 nanoparticles (i.e., 0–30%). However, the same PDMS/TiO2 coatings did not show self-cleaning performance, and instead, exhibited improved dirt pickup resistance, in outdoor exposure testing. Sustained hydrophobicity was observed in outdoor exposure testing for the clear films except when TiO2 levels were at 40%. The hysteresis of water contact angle (HWCA) significantly increased for the PDMS control coating, and water beading was lost as the film surface picked up dirt. In contrast, the TiO2-based coatings with appropriate TiO2 levels maintained a relatively low HWCA after outdoor exposure and no water sheeting on rainy days was observed. This result demonstrates that while photocatalytic TiO2 nanoparticles can maintain coating hydrophobicity upon outdoor exposure, long-term self-cleaning performance in polluted environments has not yet been achieved with this type of coating under real-world conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号