首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Failure mode and effect analysis (FMEA), a multidisciplinary reliability analysis tool based on team evaluations, has been widely used in various industries. There are three critical issues in FMEA: the conversion of linguistic evaluations, the weights of risk factors, and the ranking mechanism of failure modes. Scholars have used various fuzzy theories and multi-attribute decision-making (MADM) methods to improve traditional FMEA, but there are still deficiencies. In this paper, the hesitant intuitionistic fuzzy set (HIFS), a concept that combines the intuitionistic fuzzy set (IFS) and the hesitant fuzzy set (HFS), is introduced into FMEA to convert linguistic evaluations. Some operators based on HIFS are proposed to process the converted data. Among them, a hesitant intuitionistic fuzzy comprehensive weighted Hamming distance (HIFCWHD) operator is proposed to compute the ordered comprehensive weight, effectively weakening the effect of extreme scores on results. The gray relational projection (GRP) method is adopted to determine the risk priority order of the failure modes. Finally, we give an illustrative case to demonstrate the effectiveness of the proposed FMEA method.  相似文献   

2.
This paper proposes a time-varying failure mode and effect analysis (FMEA) method based on interval-valued spherical fuzzy theory, which not only improves the limitations in evaluating, weighting, and ranking but also considers the effect of time change. The process of distinguishing time changes enables the FMEA to have dynamic recognition capability, enabling it to identify critical failure modes more accurately. The interval-valued spherical fuzzy theory is used to deal with the uncertainty of intuitionistic linguistic evaluations. The advantages of two traditional approaches are combined to improve the weight determined method. Risk factors are divided into subjective and objective types. In the subjective risk factors, which are severity (S) and detection (D), the consistency of judgment is used as the acceptance standard. In the objective risk factors, which are occurrence (O), the time-varying characteristics are considered. The occurrence in a certain period is expressed as the integral of failure intensity in the time period. Interval-valued spherical fuzzy exponential risk priority number is proposed as the criterion for measuring the priority of failure modes. The effectiveness of the proposed method is verified using an example of spindle.  相似文献   

3.
一种综合赋权的改进FMEA风险评估方法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统故障模式和影响分析(failure mode and effects analysis, FMEA)方法中的未考虑风险因子权重以及风险因子权重难确定这一问题,提出一种综合赋权的改进FMEA风险评估方法。该方法首先通过FMEA团队明确评估对象和FMEA范围,然后列出所有潜在故障模式,对故障模式进行打分,得到所有的专家打分评估表,再通过语言变量转化为直觉模糊数。由层次分析法确定主观权重,由数据本身确定客观权重,使用直觉模糊混合加权算子(intuitionistic fuzzy hybrid weighted, IFHW)算子集结评价信息,得到所有的故障模式的得分函数,最后基于风险最大化选取每个故障模式的最大分数,进行排名,得到最终的故障模式风险顺序。通过对静电纺丝设备进行FMEA分析,并与其他方法进行比较,验证了所提方法的可行性。  相似文献   

4.
Failure mode and effects analysis (FMEA) is a prospective risk assessment tool used to identify, assess, and eliminate potential failure modes (FMs) in various industries to improve security and reliability. However, the traditional FMEA method has been criticized for several shortcomings and even the improved FMEA methods based on predefined linguistic terms cannot meet the needs of FMEA team members' diversified opinion expressions. To solve these problems, a novel FMEA method is proposed by integrating Bayesian fuzzy assessment number (BFAN) and extended gray relational analysis‐technique for order preference by similarity to ideal solution (GRA‐TOPSIS) method. First, the BFANs are used to flexibly describe the risk evaluation results of the identified failure modes. Second, the Hausdorff distance between BFANs is calculated by using the probability density function (PDF). Finally, on the basis of the distance, the extended GRA‐TOPSIS method is applied to prioritize failure modes. A simulation study is presented to verify the effectiveness of the proposed approach in dealing with vague concepts and show its advantages over existing FMEA methods. Furthermore, a real case concerning the risk evaluation of aero‐engine turbine and compressor blades is provided to illustrate the practical application of the proposed method and particularly show the potential of using the BFANs in capturing FMEA team members' diverse opinions.  相似文献   

5.
Failure modes and effects analysis (FMEA) is a safety and reliability technique that is widely used to evaluate, design, and process a system against diverse possible ways through which the potential failure has a tendency to occur. In conventional FMEA, the risk evaluation is determined by risk priority number (RPN) obtained by multiplying of three risk factors—severity, occurrence, and detection. However, because of many shortages in conventional FMEA, the RPN scores have been widely criticized along issues bothering on ambiguity and vagueness, scoring, appraising, evaluating, and selecting corrective actions. In this paper, we propose a new integrated fuzzy smart FMEA framework where the combination of fuzzy set theory, analytical hierarchy process (AHP), and data envelopment analysis (DEA) is used, respectively, to handle uncertainty and to increase the reliability of the risk assessment. These are achieved by employing a heterogeneous group of experts and determining the efficiency of FMEA mode with adequate priority and corrective actions using RPN, time, and cost as indicators. A numerical example (aircraft landing system) is provided to exemplify the feasibility and effectiveness of the proposed model. The outputs of the proposed model compared with the conventional risk assessment technique results show its effectiveness, reliability, and propensity for real applications.  相似文献   

6.
Failure mode and effects analysis (FMEA) is a widely used risk management technique for identifying the potential failures from a system, design, or process and determining the most serious ones for risk reduction. Nonetheless, the traditional FMEA method has been criticized for having many deficiencies. Further, in the real world, FMEA team members are usually bounded rationality, and thus, their psychological behaviors should be considered. In response, this study presents a novel risk priority model for FMEA by using interval two‐tuple linguistic variables and an integrated multicriteria decision‐making (MCDM) method. The interval two‐tuple linguistic variables are used to capture FMEA team members' diverse assessments on the risk of failure modes and the weights of risk factors. An integrated MCDM method based on regret theory and TODIM (an acronym in Portuguese for interactive MCDM) is developed to prioritize failure modes taking experts' psychological behaviors into account. Finally, an illustrative example regarding medical product development is included to verify the feasibility and effectiveness of the proposed FMEA. By comparing with other existing methods, the proposed linguistic FMEA approach is shown to be more advantageous in ranking failure modes under the uncertain and complex environment.  相似文献   

7.
This study aims at improving the effectiveness of failure mode and effect analysis (FMEA) technique. FMEA is a widely used technique for identifying and eliminating known or potential failures from system, design, and process. However, in conventional FMEA, risk factors of Severity (S), Occurrence (O), and Detection difficulty (D) are simply multiplied to obtain a crisp risk priority number without considering the subjectivity and vagueness in decision makers’ judgments. Besides, the weights for risk factors S, O, and D are also ignored. As a result, the effectiveness and accuracy of the FMEA are affected. To solve this problem, a novel FMEA approach for obtaining a more rational rank of failure modes is proposed. Basically, two stages of evaluation process are described: the determination of risk factors’ weights and ranking the risk for the failure modes. A rough group ‘Technique for Order Performance by Similarity to Ideal Solution’ (TOPSIS) method is used to evaluate the risk of failure mode. The novel approach integrates the strength of rough set theory in handling vagueness and the merit of TOPSIS in modeling multi‐criteria decision making. Finally, an application in steam valve system is provided to demonstrate the potential of the methodology under vague and subjective environment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Failure mode and effects analysis (FMEA) is a widely used technique for assessing the risk of potential failure modes in designs, products, processes, system, and services. One of the main problems with FMEA is the need to address a variety of assessments given by FMEA team members and the sequence of the failure modes according to the degree of risk factors. Many different methods have been proposed to improve the traditional FMEA, which is impractical when the risk assessments given by multiple experts to one failure mode are imprecise, incomplete, or inconsistent. However, the existing methods cannot adequately handle these types of uncertainties. In this paper, a new risk priority model based on D numbers and technique for the order of preference by similarity to ideal solution (TOPSIS) is proposed to evaluate the risk in FMEA. In the proposed model, the assessments given by the FMEA team members are represented by D numbers, where a new feasible and effective method can effectively represent the uncertain information. The TOPSIS method, a multicriteria decision‐making method is presented to rank the preference of failure modes with respect to risk factors. Finally, an application of the failure modes of the rotor blades of an aircraft turbine is provided to illustrate the efficiency of the proposed method.  相似文献   

9.
Failure mode and effect analysis (FMEA) is a useful technique to identify and quantify potential failures. FMEA determines a potential failure mode by evaluating risk factors. In recent years, there are many works improving FMEA by allowing multiple experts to use linguistic term sets to evaluate risk factors. However, it is important to design a framework that can consider both the weight of risk factors and the weight of the experts. In addition, managing conflicts among experts is also an urgent problem to be addressed. In this paper, we proposed an FMEA model based on multi-granularity linguistic terms and the Dempster–Shafer evidence theory. On the other hand, the weights for both experts and risk factors are taken into consideration. The weights are computed objectively and subjectively to ensure the reasonability. Further, we apply our method to an emergency department case, which shows the effectiveness of the method.  相似文献   

10.
朱玉杰  李谚 《工业工程》2016,19(3):122-129
针对失效模式与影响分析中的风险优先数(RPN)方法在质量改善项目排序问题上的局限性,提出一种新的排序方法。首先,借助模糊集理论和熵权法,确定决策指标的模糊指标值和主、客观权重;随后采用改进的理想解逼近法(TOPSIS)与秩和比法(RSR)获得优先级排序和分档;同时,提出并定义了相对应的关键术语:改善主题、难易程度、发生度和改善潜力,最后,结合企业实例验证了新排序方法的有效性和稳定性。  相似文献   

11.
Failure mode and effects analysis is a widely applied risk assessment method in various engineering and management domains. However, the identification of failure modes is difficult and uncountable. Therefore, a function–motion–action (FMA) decomposition method is developed to identify failure modes from the perspective of motion and extraordinarily suitable for mechatronic products. In the typical risk assessment, the ranking orders of failure modes are determined by risk priority number (RPN), which has been criticized for several drawbacks and improved by some alternative RPNs, but some drawbacks still exist, such as duplicate values, narrow admissible value range, and missing failure modes’ and risk factors’ weights. This study formulates several alternative weighted RPNs to overcome the above drawbacks, and the final ranking orders of failure modes are garnered through the integrated RPN (IRPN). First, failure modes are identified via the proposed FMA decomposition method and evaluated with crisp values, whose weights are aggregated from the basic failure modes’ weights. Second, the weights of the basic failure modes, risk factors and different RPN methods are derived from analytic hierarchy process. Third, the conditional weights of risk factors are determined by incorporating risk factors’ weights and failure modes’ conditional weights deduced from Shannon entropy. Next, several alternative weighted RPNs and IRPN are formulated to rank failure modes’ risk levels. Finally, an illustrative example about computer numerical control machine center is presented to demonstrate the application and effectiveness of the proposed method.  相似文献   

12.
Using the group linguistic information aggregation method, this research improved upon conventional failure mode and effect analysis (FMEA), which had the problems of the inevitable subjectivity of expert evaluations, and of the difficulty of determining the weights of experts' evaluations. First, this research treated the three risk factors of FMEA evaluation as linguistic variables and introduced a linguistic weighted geometric (LWG) operator to implement algebraic operations on the results of expert evaluations. This treatment overcame the disadvantage of fuzzy theory-based methods in which decision-making information could be lost due to the twice conversion process. Second, the weights of experts' evaluations were calculated based on the consistency of experts' ranking using a fuzzy priority method. This method placed a lower weight for the experts whose evaluation departed from group consensus, and therefore decreased the impact of the unfairness of experts on evaluation results. Finally, this article demonstrated the effectiveness and applicability of this method by an example of failure-mode analysis on the grinding wheel system of a numerical control machine.  相似文献   

13.
The Taguchi method is a powerful method of solving quality problems in various fields of engineering. However, this method was developed to optimize single-response processes. In many multi-response optimization problems, the important response is determined subjectively, based on knowledge or experience. However, using only exact numbers to represent this importance is problematic, because there is uncertainty and vagueness. The concept of intuitionistic fuzzy sets (IFSs) is a powerful method for characterization, using a membership function and a non-membership function. This paper proposes an efficient VIKOR method that optimizes multi-response problems in intuitionistic fuzzy environments. The importance weights of various responses are evaluated in terms of IFSs. In the proposed method, the similarity measure between IFSs is used to determine the crisp weights of the responses. This scheme eliminates the need for complicated intuitionistic fuzzy arithmetic operations and increases efficiency in solving multi-response optimization problems in intuitionistic fuzzy environments. Two case studies: plasma-enhanced chemical vapor deposition and a double-sided surface mount technology electronic assembly operation are used to demonstrate the effectiveness of the proposed method.  相似文献   

14.
Quality function deployment (QFD) is a product planning management instrument which has been used in a broad range of industries. However, the traditional QFD method has been criticised much for its deficiencies in acquiring experts’ opinions, weighting customer requirements (CRs) and ranking engineering characteristics (ECs). To overcome the limitations, an integrated analytical model is presented in this study for obtaining the importance ratings of ECs in QFD by integrating decision-making trial and evaluation laboratory (DEMATEL) technique and Vlsekriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method under hesitant fuzzy environment. In particular, the hesitant fuzzy DEMATEL is used to analyse the interrelationships among CRs and determine their weights, and the hesitant fuzzy VIKOR is utilised to prioritise ECs. Finally, the feasibility and practicality of the proposed method are verified by an example regarding the product development of electric vehicle.  相似文献   

15.
Modified failure mode and effects analysis using approximate reasoning   总被引:9,自引:0,他引:9  
The marine industry is recognising the powerful techniques that can be used to perform risk analysis of marine systems. One technique that has been applied in both national and international marine regulations and operations is failure mode and effects analysis (FMEA). This risk analysis tool assumes a failure mode, which occurs in a system/component through some failure mechanism; the effect of this failure is then evaluated. A risk ranking is produced in order to prioritise the attention for each of the failure modes identified. The traditional method utilises the risk priority number (RPN) ranking system. This method determines the RPN by finding the multiplication of factor scores. The three factors considered are probability of failure, severity and detectability. Traditional FMEA has been criticised to have several drawbacks. These drawbacks are addressed in this paper. A new proposed approach, which utilises the fuzzy rules base and grey relation theory is presented.  相似文献   

16.
Fuzzy assessment of FMEA for engine systems   总被引:1,自引:0,他引:1  
When performing failure mode and effects analysis (FMEA) for quality assurance and reliability improvement, interdependencies among various failure modes with uncertain and imprecise information are very difficult to be incorporated for failure analysis. Consequently, the validity of the results may be questionable. This paper presents a fuzzy-logic-based method for FMEA to address this issue. A platform for a fuzzy expert assessment is integrated with the proposed system to overcome the potential difficulty in sharing information among experts from various disciplines. The FMEA of diesel engine's turbocharger system is presented to illustrate the feasibility of such techniques.  相似文献   

17.
As one of many scientific and efficient risk assessment approaches, failure mode and effect analysis (FMEA) has been widely applied across various fields. There are two core issues in the FMEA approach: identifying the latent failure modes of the systems, products, processes and services and the risk assessment and the prioritization of those failure modes. Then, corrective measures must be taken in a timely and accessible manner to prevent the occurrence of failure modes with higher risk levels. In practice, several FMEA members from different fields are usually involved in the FMEA implementation process; the risk assessment information given by them may vary greatly. Therefore, it is necessary to integrate a consensus-building process into FMEA. Meanwhile, the psychological behaviours of FMEA members have had a great impact on the final prioritization of failure modes. Prospect theory is an effective approach for describing individual psychological behaviours. Therefore, this paper presents a novel linguistic FMEA approach to address the consensus issue from the perspective of prospect theory. In the proposed linguistic FMEA approach, a consensus measurement approach based on prospect theory is constructed. Then, a novel feedback adjustment mechanism is designed in which FMEA members can adjust not only their assessment information but also their reference points to achieve an acceptable consensus degree. Eventually, a practical application is used to show the validity and applicability of the proposed linguistic FMEA approach.  相似文献   

18.
Failure Mode and Effects Analysis (FMEA) is a technique used in the manufacturing industry to improve production quality and productivity. It is a method that evaluates possible failures in the system, design, process or service. It aims to continuously improve and decrease these kinds of failure modes. Adaptive Resonance Theory (ART) is one of the learning algorithms without consultants, which are developed for clustering problems in artificial neural networks. In the FMEA method, every failure mode in the system is analyzed according to severity, occurrence and detection. Then, risk priority number (RPN) is acquired by multiplication of these three factors and the necessary failures are improved with respect to the determined threshold value. In addition, there exist many shortcomings of the traditional FMEA method, which affect its efficiency and thus limit its realization. To respond to these difficulties, this study introduces the method named Fuzzy Adaptive Resonance Theory (Fuzzy ART), one of the ART networks, to evaluate RPN in FMEA. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
目的在模糊层次分析理论的基础上,本文从"人-环境-管理"四维度对造成跑道侵入的主要风险因素进行分析,运用基本排序的方法进行单排序,最终得到所有风险因素的危险度排序,从而为跑道安全运行提出相应措施。方法首先构造了1个准则层和4个指标层的三角模糊互补判断矩阵;其次运用模糊层次分析法对造成跑道侵入的主要因素进行了初步分析,克服了层次分析法中判断矩阵的一致性检验过程相当繁琐而且不易操作的缺点;最后利用所述的三角模糊数排序法对跑道侵入风险20个因素进行危险度总排序。结果本文得出7个影响跑道运行安全水平风险因素的重要程度排序,与实际运行结果状况基本相符。结论本文提出的方法能够较好地评估跑道侵入风险因素的危险程度,根据评估结果可有针对性地提出减少和预防跑道侵入风险控制措施,具有一定的实用性。  相似文献   

20.
Rotor blades are the major components of an aircraft turbine. Their reliability seriously affects the overall aircraft turbine security. Failure mode and effects analysis (FMEA), especially, the risk priority order of failure modes, is essential in the design process. The risk priority number (RPN) has been extensively used to determine the risk priority order of failure modes. When multiple experts give different risk evaluations to one failure mode, which may be imprecise and uncertain, the traditional RPN is not a sufficient tool for risk evaluation. In this paper, the modified Dempster–Shafer (D–S) is adopted to aggregate the different evaluation information by considering multiple experts’ evaluation opinions, failure modes and three risk factors respectively. A simplified discernment frame is proposed according to the practical application. Moreover, the mean value of the new RPN is used to determine the risk priority order of multiple failure modes. Finally, this method is used to deal with the risk priority evaluation of the failure modes of rotor blades of an aircraft turbine under multiple sources of different and uncertain evaluation information. The consequence of this method is rational and efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号