首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traditionally, a cost-efficient control chart for monitoring product quality characteristic is designed using prior knowledge regarding the process distribution. In practice, however, the functional form of the underlying process distribution is rarely known a priori. Therefore, the nonparametric (distribution-free) charts have gained more attention in the recent years. These nonparametric schemes are statistically designed either with a fixed in-control average run length or a fixed false alarm rate. Robust and cost-efficient designs of nonparametric control charts especially when the true process location parameter is unknown are not adequately addressed in literature. For this purpose, we develop an economically designed nonparametric control chart for monitoring unknown location parameter. This work is based on the Wilcoxon rank sum (hereafter WRS) statistic. Some exact and approximate procedures for evaluation of the optimal design parameters are extensively discussed. Simulation results show that overall performance of the exact procedure based on bootstrapping is highly encouraging and robust for various continuous distributions. An approximate and simplified procedure may be used in some situations. We offer some illustration and concluding remarks.  相似文献   

2.
In the last 5 years, research works on distribution‐free (nonparametric) process monitoring have registered a phenomenal growth. A Google Scholar database search on early September 2015 reveals 246 articles on distribution‐free control charts during 2000–2009 and 466 articles in the following years. These figures are about 1400 and 2860 respectively if the word ‘nonparametric’ is used in place of ‘distribution‐free’. Distribution‐free charts do not require any prior knowledge about the process parameters. Consequently, they are very effective in monitoring various non‐normal and complex processes. Traditional process monitoring schemes use two separate charts, one for monitoring process location and the other for process scale. Recently, various schemes have been introduced to monitor the process location and process scale simultaneously using a single chart. Performance advantages of such charts have been clearly established. In this paper, we introduce a new graphical device, namely, circular‐grid charts, for simultaneous monitoring of process location and process scale based on Lepage‐type statistics. We also discuss general form of Lepage statistics and show that a new modified Lepage statistic is often better than the traditional of Lepage statistic. We offer a new and attractive post‐signal follow‐up analysis. A detailed numerical study based on Monte‐Carlo simulations is performed, and some illustrations are provided. A clear guideline for practitioners is offered to facilitate the best selection of charts among various alternatives for simultaneous monitoring of location‐scale. The practical application of the charts is illustrated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Statistical process control is widely used in industrial processes, service fields, among others. While parametric control charts are useful in certain processes, there is often a lack of enough knowledge about the process distribution. So, nonparametric control charts are needed in such situations. This paper develops a new nonparametric control chart based on the Ansari–Bradley nonparametric test and the effective change point model. Simulation results show that our proposed control chart is superior to other nonparametric control charts in monitoring process variability for most cases. Our proposed control chart is easy in computation, and powerful for monitoring process variability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
There are many practical situations where the underlying distribution of the quality characteristic either deviates from normality or it is unknown. In such cases, practitioners often make use of the nonparametric control charts. In this paper, a new nonparametric double exponentially weighted moving average control chart on the basis of the signed-rank statistic is proposed for monitoring the process location. Monte Carlo simulations are carried out to obtain the run length characteristics of the proposed chart. The performance comparison of the proposed chart with the existing parametric and nonparametric control charts is made by using various performance metrics of the run length distribution. The comparison showed the superiority of the suggested chart over its existing parametric and nonparametric counterparts. An illustrative example for the practical implementation of the proposed chart is also provided by using the industrial data set.  相似文献   

5.
Traditional Duncan‐type models for cost‐efficient process monitoring often inflate type I error probability. Nevertheless, controlling the probability of type I error or false alarms is one of the key issues in sequential monitoring of specific process characteristics. To this end, researchers often recommend economic‐statistical designs. Such designs assign an upper bound on type I error probability to avoid excessive false alarms while achieving cost optimality. In the context of process monitoring, there is a plethora of research on parametric approaches of controlling type I error probability along with the cost optimization. In the nonparametric setup, most of the existing works on process monitoring address one of the two issues but not both simultaneously. In this article, we present two distribution‐free cost‐efficient Shewhart‐type schemes for sequentially monitoring process location with restricted false alarm probability, based, respectively, on the sign and Wilcoxon rank‐sum statistics. We consider the one‐sided shift in location parameter in an unknown continuous univariate process. Nevertheless, one can easily extend our proposed schemes to monitor the two‐sided process shifts. We evaluate and compare the actual performance of the two monitoring schemes employing extensive computer simulation based on Monte Carlo. We investigate the effects of the size of the reference sample and the false alarm constraint. Finally, we provide two illustrative examples, each based on a realistic situation in the industry.  相似文献   

6.
Control charts are designed under the normality assumption of the quality characteristic of the process. However, the normality assumption rarely holds in practice. In non-normal conditions, parametric charts tend to display more false alarm rates and invalid out-of-control comparisons. The exponentially weighted moving average chart is a frequently used memory-type control chart for monitoring the process target that only performs effectively under the smoothing parameter's small choices. This study proposes a nonparametric mixed exponentially weighted moving average-progressive mean chart based on sign statistic (NPMEPSN) under simple and ranked set sampling schemes to address this said drawback. Normal and non-normal distributions are included in this study to observe the proposed chart's in-control behavior and out-of-control efficacy. The prominent feature of the proposed schemes is that it works efficiently in detecting small and persistent shifts in the process location corresponding to the given values of the smoothing parameter. The proposed scheme is also tested under the ranked set sampling scheme to enhance the NPMEPSN chart's performance (hereafter named “NPMEPRSN”). The performance of the proposed charts is investigated through simulations using run-length profiles. The proposed schemes were seen to outperform other alternatives, specifically under the ranked set sampling scheme. A real data-set related to the diameter of a piston ring is included as a demonstration of the proposal.  相似文献   

7.
In most applications, parametric monitoring schemes are used to monitor the majority of industrial and nonindustrial processes in order to improve the quality of the outputs or services. However, parametric monitoring schemes are known to underperform when the normality assumption is not met or when there is not enough information about the symmetry or asymmetry nature of the process underlying distribution. Hence, in this paper, a new nonparametric Phase II Shewhart-type double-sampling (DS) monitoring scheme based on the precedence statistic is proposed in order to efficiently monitor quality processes when the underlying process distribution departs from normality. The performance is investigated using the average run length (ARL), standard deviation of the run length (SDRL), expected ARL (EARL) and expected average number of observations to signal (EANOS), and the average sample sizes (ASS) metrics. The latter metrics are computed using Monte Carlo simulation and exact formulae. In general, it is shown that the new DS precedence scheme outperforms the existing basic Shewhart precedence scheme with and without supplementary runs rules in many situations. A real-life illustrative example based on a filling process of milk bottles is provided to demonstrate the application and implementation of the new DS precedence monitoring scheme.  相似文献   

8.
Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much of the data in service industries come from processes exhibiting nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, are not appropriately used here. This paper thus proposes a standardized asymmetric exponentially weighted moving average (EWMA) variance chart with a double sampling scheme (SDS EWMA‐AV chart) for monitoring process variability. We further explore the sampling properties of the new monitoring statistics and calculate the average run lengths when using the proposed SDS EWMA‐AV chart. The performance of the SDS EWMA‐AV chart and that of the single sampling EWMA variance (SS EWMA‐V) chart are then compared, with the former showing superior out‐of‐control detection performance versus the latter. We also compare the out‐of‐control variance detection performance of the proposed chart with those of nonparametric variance charts, the nonparametric Mood variance chart (NP‐M chart) with runs rules, and the nonparametric likelihood ratio‐based distribution‐free EWMA (NLE) chart and the combination of traditional EWMA (CEW) and the SS EWMA‐V control charts by considering cases in which the critical quality characteristic presents normal, double exponential, uniform, chi‐square, and exponential distributions. Comparison results show that the proposed chart always outperforms the NP‐M with runs rules, the NLE, CEW, and the SS EWMA‐V control charts. We hence recommend employing the SDS EWMA‐AV chart. Finally, a numerical example of a service system for a bank branch in Taiwan is used to illustrate the application of the proposed variability control chart.  相似文献   

9.
In manufacturing industries, control charts are the promising statistical tools used for an efficient monitoring of processes. These charts enhance the product quality by timely signaling for special variations at any stage of the process. There are two common concerns in statistical process monitoring, location and variability of the quality characteristic of interest. Besides location parameter, the monitoring of process dispersion remained a matter of concern for researchers. The conventional simple random sampling (SRS) is a usual practice; however, ranked set sampling (RSS) schemes are very effective methods of choosing sample values. This study intends to design and investigate dispersion control charts under different RSS strategies for normal and non‐normal processes. We have considered RSS, median ranked set sampling (MRSS), and extreme ranked set sampling (ERSS) schemes to design dispersion control charts. The performance of the existing and the proposed control charts is evaluated in terms of relative efficiency and power for normal and a variety of non‐normal distributions. The comparative analysis revealed that the proposed structures outperform the existing charts. The application of the proposed procedures is also shown for a bottles filling process for an efficient and timely signaling of any special causes in the process.  相似文献   

10.
In some statistical process control applications, the quality of a process or a product can be characterized by a nonlinear relationship between a response variable and one or more explanatory variables. Monitoring nonlinear profiles using nonlinear regression has been proposed by several researchers as a potential area for research. To avoid disadvantages of parameter estimation in nonlinear regression, we used nonparametric regression with wavelets for monitoring nonlinear profiles. In nonparametric regression framework, traditional variance estimator is not proper; other estimators should be used instead. Parametric or nonparametric control charts in phase II are proposed to monitor error term variance when nonparametric regression with wavelet is used. Multivariate control chart based on regression coefficients (approximate wavelet coefficients) is added to variance control chart to check stability in the process mean. It is well known that the performance of control schemes in detecting shifts in multivariate control charts deteriorates as the dimension of regression coefficient increases. To improve the performance of control schemes, we considered decomposition level as a smoothing parameter, which determines the form of regression function (size of approximate wavelet coefficients vector) in nonparametric regression with wavelet. A method based on an analysis of variance is proposed to determine the optimal decomposition level. The statistical performances of the proposed methods are evaluated using average run length criterion using vertical density profile data. Numerical results indicate that the proposed methods perform satisfactorily. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A Distribution-Free Shewhart Quality Control Chart Based on Signed-Ranks   总被引:1,自引:0,他引:1  
Since their inception by Walter Shewhart in the late 1920s, most control chart developments have been distribution-based procedures in the sense that the process output is assumed to follow a specified probability distribution (normal for continuous measurements and binomial or Poisson for attribute data). Due to Deming's influence and their widespread adoption as one of the seven basic tools of total quality management (TQM), control charts have been applied to processes where data may be markedly nonnormal. In this article, we propose a distribution-free (or nonparametric) statistical quality control chart for monitoring a process center. The proposed chart is of the Shewhart type and is based on the signed-ranks of grouped observations. The exact false alarm rate and the in-control average run length of the proposed chart are computed by using the null distribution of the well-known Wilcoxon signed-rank statistic. The out-of-control run lengths are computed exactly for normal underlying distributions and by simulation for uniform, double exponential, and Cauchy shift alternatives. Efficiency studies show that the proposed chart is more efficient than the traditional Shewhart X-bar chart under heavy-tailed distributions (the double exponential and the Cauchy) but is less efficient under light-tailed distributions (the uniform and the normal).  相似文献   

12.
Weibull distribution is one of the most important probability models used in modeling time between events, system reliability, and particle sizes, among others. Therefore, efficiently and consequently monitoring certain changes in Weibull process is considered as an important research topic. Various statistical process monitoring schemes have been developed for monitoring different process parameters, including some for Weibull parameters. Most of these schemes are, however, designed to monitor and control a single process parameter, although there are two important model parameters for Weibull distribution. Recently, several researchers studied various schemes for jointly monitoring the mean and variance of a normally distributed process using a single plotting statistic. Nevertheless, there is still dearth of researches in joint monitoring of non‐normal process parameters. In this context, we develop some control schemes for simultaneously monitoring the scale and shape parameters of processes that follow the Weibull distribution. Implementation procedures are developed, and performance properties of various proposed schemes are investigated. We also offer an illustrative example along with a summary and recommendations.  相似文献   

13.
In today's manufacturing industries, if the quality characteristic of a product or a process is assumed to be represented by a functional relationship between the response variable and one or more explanatory variables, then the data generated from such a relationship are called profile data. Generally speaking, the functional relationship of the profile data rarely occurs in linear form, and the real data usually do not follow normal distribution. Thus, in this paper, the functional relationship of profile data is described via a nonparametric regression model and a nonparametric exponentially weighted moving average (EWMA) control chart is developed for detecting the process shifts for nonlinear profile data in the Phase II monitoring. We first fit the nonlinear profile data via a support vector regression model and use the fitted values to calculate the five metrics. Then, the nonparametric EWMA control chart with the five metrics can be constructed accordingly. Moreover, a simulation study is conducted to evaluate the detecting performance of the new control chart under various process shifts using the out‐of‐control average run length. Finally, a realistic nonlinear profile example is used to demonstrate the usefulness of our proposed nonparametric EWMA control chart and its monitoring schemes. It is expected that the proposed nonparametric EWMA control chart can enhance the monitoring efficiency for nonlinear profile data in the phase II study.  相似文献   

14.
A New Chart for Monitoring Service Process Mean   总被引:1,自引:0,他引:1  
Control charts are demonstrated effective in monitoring not only manufacturing processes but also service processes. In service processes, many data came from a process with nonnormal distribution or unknown distribution. Hence, the commonly used Shewhart variable control charts are not suitable because they could not be properly constructed. In this article, we proposed a new mean chart on the basis of a simple statistic to monitor the shifts of the process mean. We explored the sampling properties of the new monitoring statistic and calculated the average run lengths of the proposed chart. Furthermore, an arcsine transformed exponentially weighted moving average chart was proposed because the average run lengths of this modified chart are more intuitive and reasonable than those of the mean chart. We would recommend the arcsine transformed exponentially weighted moving average chart if we were concerned with the proper values of the average run length. A numerical example of service times with skewed distribution from a service system of a bank branch in Taiwan is used to illustrate the proposed charts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The nonparametric (distribution-free) control charts are robust alternatives to the conventional parametric control charts when the form of underlying process distribution is unknown or complicated. In this paper, we consider two new nonparametric control charts based on the Hogg–Fisher–Randle (HFR) statistic and the Savage rank statistic. These are popular statistics for testing location shifts, especially in right-skewed densities. Nevertheless, the control charts based on these statistics are not studied in quality control literature. In the current context, we study phase-II Shewhart-type charts based on the HFR and Savage statistics. We compare these charts with the Wilcoxon rank-sum chart in terms of false alarm rate, out-of-control average run-length and other run length properties. Implementation procedures and some illustrations of these charts are also provided. Numerical results based on Monte Carlo analysis show that the new charts are superior to the Wilcoxon rank-sum chart for a class of non-normal distributions in detecting location shift. New charts also provide better control over false alarm when reference sample size is small.  相似文献   

16.
Distribution-free (nonparametric) control charts can play an essential role in process monitoring when there is dearth of information about the underlying distribution. In this paper, we study various aspects related to an efficient design and execution of a class of nonparametric Phase II exponentially weighted moving average (denoted by NPEWMA) charts based on exceedance statistics. The choice of the Phase I (reference) sample order statistic used in the design of the control chart is investigated. We use the exact time-varying control limits and the median run-length as the metric in an in-depth performance study. Based on the performance of the chart, we outline implementation strategies and make recommendations for selecting this order statistic from a practical point of view and provide illustrations with a data-set. We conclude with a summary and some remarks.  相似文献   

17.
Parametric (or traditional) control charts are based on the assumption that the quality characteristic of interest follows a specific distribution. However, in many applications, there is a lack of knowledge about the underlying distribution. To this end, nonparametric (or distribution-free) control charts have been developed in recent years. In this article, a nonparametric double homogeneously weighted moving average (DHWMA) control chart based on the sign statistic is proposed for monitoring the location parameter of an unknown and continuous distribution. The performance of the proposed chart is measured through the run-length distribution and its associated characteristics by performing Monte Carlo simulations. The DHWMA sign chart is compared with other nonparametric sign charts, such as the homogeneously weighted moving average, generally weighted moving average (GWMA), double GWMA, and triple exponentially weighted moving average sign charts, as well as the traditional DHWMA chart. The results indicate that the proposed chart performs just as well as and in some cases better than its competitors, especially for small shifts. Finally, two examples are provided to show the application and implementation of the proposed chart.  相似文献   

18.
Profile monitoring is an important and rapidly emerging area of statistical process control. In many industries, the quality of processes or products can be characterized by a profile that describes a relationship or a function between a response variable and one or more independent variables. A change in the profile relationship can indicate a change in the quality characteristic of the process or product and, therefore, needs to be monitored for control purposes. We propose a high‐dimensional (HD) control chart approach for profile monitoring that is based on the adaptive Neyman test statistic for the coefficients of discrete Fourier transform of profiles. We investigate both linear and nonlinear profiles, and we study the robustness of the HD control chart for monitoring profiles with stationary noise. We apply our control chart to monitor the process of nonlinear woodboard vertical density profile data of Walker and Wright (J. Qual. Technol. 2002; 34:118–129) and compare the results with those presented in Williams et al. (Qual. Reliab. Eng. Int. 2007; to appear). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
In this article, we propose a nonparametric EWMA control chart for monitoring the shape matrix of a multivariate process based on a spatial rank test and the exponentially weighted moving average scheme. The proposed control chart is essentially developed using an estimated spatial rank covariance matrix to test the shape matrix of the covariance matrix of multivariate distributions with heavy tails. Based on our simulation studies, the proposed control chart outperforms the only existing nonparametric control chart in many practical out‐of‐control scenarios for monitoring the shape matrix of the covariance matrix of many multivariate processes. Further, we point out the weaknesses of both the nonparametric EWMA control charts for monitoring the shape matrix of multivariate processes in real applications and propose one possible method to overcome these weaknesses. We also use an example from a white wine production process to demonstrate the applicability and implementation of the proposed control chart.  相似文献   

20.
Monitoring multivariate quality variables or data streams remains an important and challenging problem in statistical process control (SPC). Although the multivariate SPC has been extensively studied in the literature, designing distribution-free control schemes are still challenging and yet to be addressed well. This article develops a new nonparametric methodology for monitoring location parameters when only a small reference dataset is available. The key idea is to construct a series of conditionally distribution-free test statistics in the sense that their distributions are free of the underlying distribution given the empirical distribution functions. The conditional probability that the charting statistic exceeds the control limit at present given that there is no alarm before the current time point can be guaranteed to attain a specified false alarm rate. The success of the proposed method lies in the use of data-dependent control limits, which are determined based on the observations online rather than decided before monitoring. Our theoretical and numerical studies show that the proposed control chart is able to deliver satisfactory in-control run-length performance for any distributions with any dimension. It is also very efficient in detecting multivariate process shifts when the process distribution is heavy-tailed or skewed. Supplementary materials for this article are available online.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号