首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Printed functional materials are a rapidly growing area of interest for low-cost high-speed device manufacture with flexographic printing seen as a route to achieving this. The relationship between surface tension of the ink and surface free energy (SFE) of the photopolymer plate is a key for optimum performance. However, traditional methods of surface tension modification of the ink/coating often cannot be employed for functional inks. In this research, rapid, permanent modification of flexographic printing plate’s SFE is achieved through controlled UV-ozone treatment, and the effects of the treatment on the polar and dispersive component of SFE are analyzed by Fourier transform infrared attenuated total reflectance spectroscopy, swelling experiments, and roughness measurements. Printing trials using the modified printing plates reveal improved print uniformity and control of deposited ink layer thickness, as well as improved print features—particularly track and pad junctions which can be problematic for printed electronic applications. The ability to rapidly tailor printing plate SFE is of benefit to all volume printing applications. Furthermore, it is of critical importance for functional printing and printed electronics where surface tension of the ink is determined by the functional material and chemical modification is not possible or desirable.  相似文献   

2.
In this study, a new waterborne acrylic copolymer resin (acrylic-co-resin) was synthesized to develop water-based printing inks on polyester (PET) film. The synthesized acrylic resin showed good water solubility, high acid value (120 mg KOH/g), about 57% solid content. The developed water-based inks (cyan, magenta, and yellow) exhibited small particle size (<1 μm) and optimum surface energy within required values (31.5, 32, and 30 mN/m) for good adhesion of ink upon PET films. The developed inks also showed good storage stability for 30 days. Further, to evaluate the application performance, the inks were printed on corona-treated PET films at room temperature, and the ink drying time was measured. Further, the inks were printed on the corona-treated PET film to evaluate the application performance. The developed inks showed a short drying time (7–9 s), which indicates their fast drying nature. Moreover, the developed inks showed good printability, color strength, high adhesion, and excellent rub-resistant properties. Thus, the overall results demonstrated the potential of water-based inks in printing applications.  相似文献   

3.
Vanadium nitride (VN x ) thin films have attracted much attention for semiconductor integrated circuit (IC) packaging molding dies, and forming tools due to their excellent hardness and, thermal stability. VN x thin films with VN0.45, VN0.83, VN1.22, VN1.73, VN2.06 were prepared using a radio frequency (RF) sputter technique. The experimental results showed that the contact angle at 20°C increases with increasing nitrogen content of the VN x films, to 101.4° corresponding to VN1.73 and then decreased. In addition, the contact angles decreased with increasing surface temperature, because an increase of the surface temperature disrupts the hydrogen bonds between water and the films and the water gradually vaporizes. The total surface fee energy (SFE) at 20°C decreased with nitrogen content of the VN x films to 29.8 mN/m (VN1.73) and then increased. This is because a larger contact angle means weaker hydrogen bonding which results in a lower SFE. The polar SFE component had the same trend as the total SFE, but the dispersive SFE component had the opposite trend. The polar SFE component is also lower than the dispersive SFE component. This is because hydrogen bonds are polar. The total SFE, dispersive SFE and polar SFE of the VN x films all decrease with increasing surface temperature. This is because with increasing temperature, water evaporates from the surface, disrupting hydrogen bonds and hence increasing surface entropy. The film roughness has an obvious effect on the SFE and there is tendency for the SFE to increase with increasing film surface roughness. As a result the SFE and surface roughness can be expressed in terms of a simple ratio function.  相似文献   

4.
聚氨酯乳液的改性及其应用研究   总被引:1,自引:0,他引:1  
用丙酮法合成了固含量为35%的聚氨酯成膜乳液。主要考查了复合型软段对聚氨酯成膜乳液及其胶膜性能的影响,并考查了乳液在水性印刷油墨中的应用。结果表明,亲水基团-COOH质量分数达到1.5%,能保证乳液的力学稳定性;随着不同聚多元醇复配比例的变化,乳液的稳定性和黏度、聚氨酯胶膜的力学性能以及吸水性均呈规律性变化,所制备的水性聚氨酯油墨对PET薄膜的附着力好。  相似文献   

5.
We studied the surfaces, including both the composition effects and the processing rates, of polypropylene (PP) composite films used for synthetic paper to determine the surface free energy (γs) and the irregularities on the film surfaces. We correlated these two characteristics to the printing quality by assessing the facility with which the offset ink was removed from the surface of the paper and also the ink absorption. Five films with different compositions were uniaxially oriented with a flat‐die extruder at two different stretching rates. The results of scanning electron microscopy (SEM) of the films showed good dispersion and distribution of the filler particles used in the compositions of the films and also of the polystyrene (PS) dispersed throughout the PP matrix. The SEM analysis also revealed slightly high surface irregularities on the film surfaces through a high concentration of CaCO3, which thus increased the coefficients of static and kinetic friction and the γs values. These film properties created better printing quality and also more strongly fixed offset ink onto the film. However, the films with high relative quantities of PS in their composition showed a high polar component in their total γs when compared to films with less PS or no PS in their compositions. However, because of the apolar characteristic of the offset printing ink, the ink absorption worsened. The films underwent stretching at two different rates, which did not significantly affect the γs values or the friction coefficients; however, they did slightly change the printing quality and ink adhesion. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2346–2355, 2003  相似文献   

6.
Three-layer films were prepared with polyethylene (PE) and poly(ethylene terephthalate) (PET) films as the outer layers and a film of high-density polyethylene (HDPE)/ethylene-methyl acrylate-glycidyl methacrylate (E-MA-GMA) terpolymer blend as the inner layer using compression molding. E-MA-GMA, an elastomer containing an epoxy functional group, was used as the adhesion promoting agent in the multilayer films. The effects of processing temperature, pressure application time and elastomer concentration on adhesion were investigated. The adhesion strength between PE and PET films increased with increasing bonding temperature, bonding time and elastomer concentration. From contact angle measurements, it was observed that the work of adhesion between the polymers increased with increasing amount of elastomer. Improved adhesion between PET and HDPE with 30% elastomer films was confirmed by SEM analyses of the film layers. Using FT-IR analysis of PE/HDPE-30% elastomer/PET delaminated film, the decrease in peak intensity of the epoxy groups tends to indicate reaction of epoxy functionality with functional groups in PET.  相似文献   

7.
介绍了一种共聚改性型醋酸乙烯酯-叔碳酸乙烯酯(veova10)-丙烯酸酯共聚乳液的合成过程及其性能和应用情况,该乳液应用于聚丙烯(简称BOPP)或涤纶(PET)薄膜的背涂,该预涂膜与纸张印刷品复合粘接,达到了良好的效果,粘接性能优良,剥离强度(180°)达0.6N/mm,即油墨层剥离的效果,且印刷品无气泡、变色现象。  相似文献   

8.
For the first time, the use of ionic liquids as additives for printing inks in order to improve the wettability of the printing base by the ink is presented. The aim of this work was to study the influence of ionic liquids on the selected properties of water‐based printing ink and the prints. The contact angles of the printing inks on the printing base were measured. Modified flexographic inks were laboratory printed on polypropylene plastic film. The impact of small amounts of various ionic liquids on printing ink colour was examined in terms of the optical density of the full‐tone area, the colour parameters (L*, a*, b*, CIE), the total colour difference, and the gloss of the dried ink film. The influence of ionic liquids on the ink contact angle, the optical density, and the L*a*b* coordinates is discussed. In general, the investigated ionic liquids improve the wettability of water‐based flexographic printing ink, with an acceptable total colour difference. The optical density is increased for printing inks containing ionic liquids in comparison with the original flexographic printing ink, Process.  相似文献   

9.
Silver nanowire (AgNWs) inks for inkjet printing were prepared and the effects of the solvent system, wetting agent, AgNWs suspension on the viscosity, surface tension, contact angle between ink droplet and poly(ethylene) terephthalate (PET) surface, and pH value of AgNWs ink were discussed. Further, AgNWs flexible transparent conductive films were fabricated by using inkjet printing process on the PET substrate, and the effects of the number printing layer, heat treatment temperature, drop frequency, and number of nozzle on the microstructures and photoelectric properties of AgNWs films were investigated in detail. The experimental results demonstrated that the 14-layer AgNWs printed film heated at 60 °C and 70 °C had an average sheet resistance of 13 Ω∙sq−1 and 23 Ω∙sq−1 and average transparency of 81.9% and 83.1%, respectively, and displayed good photoelectric performance when the inkjet printing parameters were set to the voltage of 20 V, number of nozzles of 16, drop frequency of 7000 Hz, droplet spacing of 15 μm, PET substrate temperatures of 40 °C and nozzles of 35 °C during printing, and heat treatment at 60 °C for 20 min. The accumulation and overflow of AgNWs at the edges of the linear pattern were observed, which resulted in a decrease in printing accuracy. We successfully printed the heart-shaped pattern and then demonstrated that it could work well. This showed that the well-defined pattern with good photoelectric properties can be obtained by using an inkjet printing process with silver nanowires ink as inkjet material.  相似文献   

10.
This study describes the application of conductive polymer inks onto PET foils by the waterless offset printing technique. Commercially available conductive polymer inks were employed, which exhibit significantly lower viscosities than conventional offset printing inks. The main focus was put on the influence of the rubber blanket, which covers the blanket cylinder of the offset printing unit, on the morphology and electrical properties of the printed conductive polymer layers. Since film splitting occurs between substrate and rubber blanket, the latter affects the amount of ink which is transferred by the printing process. The wet film thickness of the printed material was determined for different rubber blanket specifications and inking rates. In addition, the resistivity of the printed conductive polymer layer was measured after flue-curing of the samples. Further, the electrical performance on corona-treated and untreated PET substrate foils was compared.  相似文献   

11.
The adhesion between different types of polyethylene terephthalate (PET) substrates coated with thin silicon oxide (SiOx) layers is examined using two alternative approaches. The surface of the polymer was hydrolyzed or silylated prior to the deposition of the oxide layer, to be compared with untreated PET. The first approach is the thermodynamic adsorption model from which are defined the dispersive and polar components of the polymer surface energy, obtained from wetting measurements. The second approach is the micromechanical analysis of the interface stress transfer which provides the interface shear strength from the measurement of the density of coating cracks vs. applied tensile strain. The hydrolysis treatment slightly hydrophobizes the PET surface; however, it does not significantly modify the interface shear strength compared with the untreated material. By contrast, the silane treatment improves the polar component of the PET, which is related, to a first approximation, to the measured 30% increase of the interface shear strength compared to the untreated material.  相似文献   

12.
For the first time, the efficiency of different surface pretreatment approaches prior to adhesive bonding of a fibreglass-reinforced epoxy vinyl ester thermoset composite has been investigated. It was found that grit-blasting generally had a negligible effect on the surface free energy (SFE) calculated using the Owens, Wendt, Rabel, and Kaelble method, as well as the Lifshitz–van der Waals/acid-base (LWAB) approach. However, contrary to abrading, grit-blasting has shown its efficiency to flatten sharp surface irregularities and introduce surface roughness features suitable to adhesive bonding processes. With or without a previous grit-blasting step, argon gas atmospheric cold plasma treatment has shown a slight to moderate efficiency in increasing the SFE polar component of the composite. However, it was found that the addition of 0.07% oxygen to the argon plasma readily allows an important gain in the SFE polar component. Indeed, when processed at a speed of 30 m/min on a previously grit-blasted composite surface, the Ar/O2 atmospheric cold plasma treatment increases the surface free energy to values >73 mJ/m2, making the surface condition optimized for structural adhesive bonding. An oxidation mechanism of the composite surface exposed to atmospheric cold plasma was suggested on the basis of correlations established between the polar part of SFE obtained from the Owens et al. method, acid/base components calculated using the LWAB approach, and ATR infrared spectroscopy signatures obtained for a model polyolefin material.  相似文献   

13.
To improve the interfacial adhesion between evaporated copper film and poly(ethylene terephthalate) (PET), the surface of PET films was modified by treating with hydrazine monohydrate. The effect of the treatment time in the range of 5-20 min with 80 wt% hydrazine monohydrate at 60 °C on the number of polar groups created on PET was investigated. The surface topography of and water contact angle on the PET film surface, the mechanical properties of the PET film, and the adhesion strength of evaporated copper metal film to the PET film surface were also investigated. The introduction of polar groups on the modified PET film surface was examined by FT-IR and ESCA analyses. The amount of polar groups increased to the maximum value with increasing treatment time to 10 min, and thereafter it decreased markedly. The surface roughness increased with increasing treatment time up to 10 min and cracks occurred after 20 min. The water contact angle and tensile properties decreased with increasing treatment time. Using the scratch test, the adhesion between Cu film and PET was found to increase with increasing treatment time up to 10 min and thereafter there was a remarkable decrease in adhesion. From these results, it was concluded that the optimum treatment time with hydrazine monohydrate (80 wt%) at 60°C was about 10 min to improve copper-PET adhesion.  相似文献   

14.
Abstract

Adhesion is a surface phenomenon occurring in many processes, e.g., bonding, painting or varnishing. Knowing the adhesion properties is critical for evaluating the usability or behaviour of materials during these processes. Good adhesion properties favour the processes of bonding, resulting in high strength of adhesive joints. Adhesive bonded joints are used in many industries, and the subject of this study was 7075 aluminium alloy sheet bonded joints as typically used in the aviation or construction industry. Surface free energy (SFE) can be used to determine the adhesion properties of the materials. The SFE of the tested sheets was determined with the Owens–Wendt method, which consists in determining the dispersion and polar components of SFE. The purpose of this work was to correlate the bonded joint strength of selected aluminium alloy sheets to the surface free energy of the sheets that had been subjected to degreasing only and no other prior treatment was used. Single-lap bonded joints of 7075 aluminium alloy sheets were tested. Higher joint strength was measured for the thinner sheets, while the lowest strength was measured for the thickest sheets. This suggests that the thickness of the joined parts is an important factor in the strength of bonded joints. The comparison of adhesion properties to the strength of adhesive joints of tested materials shows that there is no direct relation between good adhesion properties (i.e., high SFE) and joint strength. As for degreasing, the highest joint strength was observed for aluminium alloy sheets with the lowest SFE; the sheets which were not degreased gave the highest SFE and highest joint strength.  相似文献   

15.
The aim of this study was to analyze how corona dosages above recommended levels affect film surface energy and hydrophobic recovery of such treated film surfaces as well as laminate bond strength of laminates made of these films. The adhesive for lamination was a polyurethane‐adhesive with a dry film thickness of ~5 µm. Polar and dispersive parts of the surface energy were measured frequently according to DIN 55660‐2 (Owens–Wendt–Rabel‐and‐Kaelble method) for up to 140 days after corona treatment. The corona dosage had a value of up to 280 W min/m2. Laminate bond strength was measured according to DIN 55543‐5. The effect of corona treatment was highest for low‐density polyethylene (PE‐LD) films, mean for biaxial‐oriented polypropylene (PP‐BO) films, and lowest for biaxial‐oriented poly(ethylene terephthalate) (PET‐BO) films. With increasing storage time, surface energy decreased, as expected. The higher the effect of corona treatment, the faster the polar part of surface energy decreased. At PE‐LD, laminate bond strength increased with a higher corona dosage from 0.05 to 8.87 mN/15 mm, whereas at PET‐BO and PP‐BO laminate bond strength was so high that samples teared before delamination during bond strength testing. By our results is shown that corona dosages above recommended levels resulted in higher laminate bond strength. Only at PP‐BO a reduction of laminate bond strength due to “overtreatment” was be observed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45842.  相似文献   

16.
A braid‐reinforced hollow fiber membrane with mechanically stable coating layer was prepared by coating a blended polymer dope solution on an alkaline‐treated poly(ethylene terephthalate) (PET) braid. The alkaline treatment was carried out to endow the PET braid surface with more polar groups and better hydrophilicity. The results showed that the bonding strength between the hydrophilic coating layer and modified PET braid was about two times as great as that between the coating layer and original PET braid, while the pure water permeability (PWP) of the membrane remained unchanged when the PET braid was simply treated in 3 wt % potassium hydroxide (KOH) solution at 90 °C for 1 h or 1 wt % KOH solution for 6 h. The proposed modification approach proved to be a facile, low‐cost, and effective method to improve bonding strength between the coating layer and the braid, while other properties, such as PWP and morphology of the coating layer, of the braid‐reinforced hollow fiber membranes were not altered, indicating promising potential in membrane engineering. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46104  相似文献   

17.
The dispersive and polar force components of surface free energy have been measured for water left in contact with films dried from various emulsion adhesives. The polar component was lowered but the dispersive components were about 28 mJ m-2 in each case. From these measurements of thermodynamic work of adhesion in the presence of contaminated water have been calculated for adhesive-polystyrene interfaces. An equation has been derived giving the dependence of thermodynamic work of adhesion upon the total surface free energy of water. It shows that the thermodynamic work of adhesion decreases as the surface free energy of water is lowered, but it eventually reaches a minimum and then may increase slightly.  相似文献   

18.
The dispersive and polar force components of surface free energy have been measured for water left in contact with films dried from various emulsion adhesives. The polar component was lowered but the dispersive components were about 28 mJ m?2 in each case. From these measurements of thermodynamic work of adhesion in the presence of contaminated water have been calculated for adhesive-polystyrene interfaces. An equation has been derived giving the dependence of thermodynamic work of adhesion upon the total surface free energy of water. It shows that the thermodynamic work of adhesion decreases as the surface free energy of water is lowered, but it eventually reaches a minimum and then may increase slightly.  相似文献   

19.
采用溶液流延法以豌豆淀粉(PS)和聚乳酸(PLA)为原料制备了豌豆淀粉/聚乳酸(PS/PLA)双层薄膜。通过对双层薄膜的吸水性、溶解性、水蒸气透过性、拉伸性能、表面形貌等进行测试,研究了薄膜的力学性能、疏水性能以及水蒸气阻隔性能。结果表明:随着双层膜中聚乳酸层的比例增加,双层薄膜的吸水性、溶解性和水蒸气透过性逐渐降低,拉伸强度和拉伸模量逐渐增加,断裂伸长率逐渐下降,表明水蒸气阻隔效果明显,增加了膜的韧性,降低了膜的强度。当PLA和PS的质量比为50:50时,PS/PLA双层膜的拉伸强度为(13.47±0.75)MPa,拉伸模量为(0.848±0.002)GPa;断裂伸长率为(16.11±0.16)%,水蒸气透过系数为0.27×10-10 g·cm/(cm2·s·Pa)。  相似文献   

20.
Yali Li  K.G. Neoh  E.T. Kang 《Polymer》2004,45(26):8779-8789
A surface modification technique was developed for the covalent immobilization of poly(vinyl alcohol) (PVA) hydrogel onto poly(ethylene terephthalate) (PET) to improve the biocompatibility of the film. The PET film was first graft copolymerized with poly(ethylene glycol) monomethacrylate (PEGMA) in the presence of ethylene glycol dimethacrylate (EGDMA) as crosslinker, and then oxidized with a mixture of acetic anhydride (Ac2O) and dimethyl sulfoxide (DMSO) to produce aldehyde groups on the PET surface. Finally, the prepared PVA solution was cast onto the film and covalently immobilized on the film through the reaction between the aldehyde groups on the PET film and the hydroxyl groups of PVA. The good attachment of the PVA layer to the PET film was confirmed by observing the cross-section of the PET-PVA film using scanning electron microscopy (SEM). Heparin was immobilized on the PVA layered PET using two different methods, physical entrapment and covalent bonding, to further improve the biocompatibility of the film. Attenuated total reflectance (ATR) FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize the chemical composition of the surface modified films. The biocompatibility of the various surface modified PET films was evaluated using plasma recalcification time (PRT) and platelet adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号