首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Control charts are the most popular tool of statistical process control for monitoring variety of processes. The detection ability of these control charts can be improved by introducing various transformations. In this study, we have enhanced the performance of CUSUM charts by introducing a link relative variable transformation technique. Link relative variable converts the original process variable in a form which is relative to its mean. So, the link relative represents the relative positioning of the observations. Average run length (ARL ) is used to compare our technique with the previous studies. The comparison shows the overall good detection performance of our scheme for a span of shifts in the mean. A real‐world example from the electrical engineering process is also included to demonstrate the application of proposed control chart.  相似文献   

2.
3.
There is growing literature on new versions of “memory-type” control charts, where deceptively good zero-state average run-length (ARL) performance is misleading. Using steady-state run-length analysis in combination with the conditional expected delay (CED) metric, we show that the increasingly discussed progressive mean (PM) and homogeneously weighted moving average (HWMA) control charts should not be used in practice. Previously reported performance of methods based on these two approaches is misleading, as we found that performance is good only when a process change occurs at the very start of monitoring. Traditional alternatives, such as exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) charts, not only have more consistent detection behavior over a range of different change points, they can also lead to better out-of-control zero-state ARL performance when properly designed.  相似文献   

4.
An efficient alternative to the S control chart for detecting shifts of small magnitude in the process variability using a moving average based on the sample standard deviation s statistic is proposed. Control limit factors are derived for the chart for different values of sample size and span w. The performance of the moving average S chart is compared to the S chart in terms of average run length. The result shows that the performance of moving average S chart for varying values of w outweigh those of the S chart for small and moderate shifts in process variability.  相似文献   

5.
6.
In the service and manufacturing industry, memory-type control charts are extensively applied for monitoring the production process. These types of charts have the ability to efficiently detect disturbances, especially of smaller amount, in the process mean and/or dispersion. Recently, a new homogeneously weighted moving average (HWMA) chart has been proposed for efficient monitoring of smaller shifts. In this study, we have proposed a new double HWMA (DHWMA) chart to monitor the changes in the process mean. The run length profile of the proposed DHWMA chart is evaluated and compared with some existing control charts. The outcomes reveal that the DHWMA chart shows better performance over its competitor charts. The effect of non-normality (in terms of robustness) and the estimation of the unknown parameters on the performance of the DHWMA chart are also investigated as a part of this study. Finally, a real-life industrial application is offered to demonstrate the proposal for practical considerations.  相似文献   

7.
Several modifications and enhancements to control charts in increasing the performance of small and moderate process shifts have been introduced in the quality control charting techniques. In this paper, a new hybrid control chart for monitoring process location is proposed by combining two homogeneously weighted moving average (HWMA) control charts. The hybrid homogeneously weighted moving average (HHWMA) statistic is derived using two smoothing constants λ1 and λ2 . The average run length (ARL) and the standard deviation of the run length (SDRL) values of the HHWMA control chart are obtained and compared with some existing control charts for monitoring small and moderate shifts in the process location. The results of study show that the HHWMA control chart outperforms the existing control charts in many situations. The application of the HHWMA chart is demonstrated using a simulated data.  相似文献   

8.
This paper proposes a parameter-free Kullback-Leibler information control chart for monitoring sustained shifts in the process mean of a normally distributed process in phase II. Two plotted statistics are provided. One is based on our backward empirical sequential test, the other is based on the maximum log-likelihood ratio change point method. These two achieve similar performances for the control chart. The performance of the proposed chart is compared with those of the cumulative sum chart, the exponentially weighted moving average chart, and the generalized likelihood ratio (GLR) chart. The results show that our proposed chart and the GLR chart have similar performances. Both can detect a wide range of shifts in the process mean, and neither requires design parameters other than the control limits. The proposed chart outperforms GLR when the size of the shift is below 1.24 standard deviations, while GLR outperforms the proposed chart when the size of the shift is above 1.24 standard deviations.  相似文献   

9.
In this paper, we propose a mixed control chart to monitor the process quality using attribute data combined with variable data. The proposed control chart proceeds like an np control chart based on the number of nonconforming parts but requires variable data only when the decision is indeterminate. The control coefficients are determined by considering the in-control and the out-of-control average run lengths for various specified parameters. The extensive tables are provided for the industrial use. The advantages of the proposed control chart are discussed over the traditional np control chart.  相似文献   

10.
Zero-inflated Poisson (ZIP) model is very useful in high-yield processes where an excessive number of zero observations exist. This model can be viewed as an extension of the standard Poisson distribution. In this paper, a one-sided generally weighted moving average (GWMA) control chart is proposed for monitoring upward shifts in the two parameters of a ZIP process (regarded as ZIP-GWMA chart). The design parameters of the proposed chart are provided, and through a simulation study, it is shown that the ZIP-GWMA performs better than the existing control charts under shifts in both parameters. Moreover, an illustrative example is presented to display the application of the proposed chart on practitioners.  相似文献   

11.
The exponentially weighted moving average (EWMA), cumulative sum (CUSUM), and adaptive EWMA (AEWMA) control charts have had wide popularity because of their excellent speed in tracking infrequent process shifts, which are expected to lie within certain ranges. In this paper, we propose a new AEWMA dispersion chart that may achieve better performance over a range of dispersion shifts. The idea is to first consider an unbiased estimator of the dispersion shift using the EWMA statistic, and then based on the magnitude of this shift, select an appropriate value of the smoothing parameter to design an EWMA chart, named the AEWMA chart. The run length characteristics of the AEWMA chart are computed with the help of extensive Monte Carlo simulations. The AEWMA chart is compared with some of the existing powerful competitor control charts. It turns out that the AEWMA chart performs substantially and uniformly better than the EWMA‐S2, CUSUM‐S2, existing AEWMA, and HHW‐EWMA charts when detecting different kinds of shifts in the process dispersion. Moreover, an example is also used to explain the working and implementation of the proposed AEWMA chart.  相似文献   

12.
In recent years, the memory‐type control charts—exponentially weighted moving average (EWMA) and cumulative sum (CUSUM)—along with the adaptive and dual control‐charting structures have received considerable attention because of their excellent ability in providing an overall good detection over a range of mean‐shift sizes. These adaptive memory‐type control charts include the adaptive exponentially weighted moving average (AEWMA), dual CUSUM, and adaptive CUSUM charts. In this paper, we propose a new AEWMA chart for efficiently monitoring the process mean. The idea is to first design an unbiased estimator of the mean shift using the EWMA statistic and then adaptively update the smoothing constant of the EWMA chart. The run length profiles of the proposed AEWMA chart are computed using extensive Monte Carlo simulations. Based on a comprehensive comparative study, it turns out that the proposed AEWMA chart performs better than the existing AEWMA, adaptive CUSUM, dual CUSUM, and Shewhart‐CUSUM charts, in terms of offering more balanced protection against mean shifts of different sizes. An example is also used to explain the working of the existing and proposed control charts.  相似文献   

13.
The cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been widely accepted because of their fantastic speed in identifying small‐to‐moderate unusual variations in the process parameter(s). Recently, a new CUSUM chart has been proposed that uses the EWMA statistic, called the CS‐EWMA chart, for monitoring the process variability. On similar lines, in order to further improve the detection ability of the CS‐EWMA chart, we propose a CUSUM chart using the generally weighted moving average (GWMA) statistic, named the GWMA‐CUSUM chart, for monitoring the process dispersion. Monte Carlo simulations are used to compute the run length profiles of the GWMA‐CUSUM chart. On the basis of the run length comparisons, it turns out that the GWMA‐CUSUM chart outperforms the CUSUM and CS‐EWMA charts when identifying small variations in the process variability. A simulated dataset is also used to explain the working and implementation of the CS‐EWMA and GWMA‐CUSUM charts.  相似文献   

14.
Profile monitoring is referred to as monitoring the functional relationship between the response and explanatory variables. Traditionally, process control charts monitor the mean and/or the variance of a univariate quality characteristic. For several correlated quality characteristics, multivariate process control charts monitor the mean vector and/or the covariance matrix. However, monitoring the functional relationship between variables is sometimes more beneficial. One example is the power output of a Diesel engine and the amount of fuel injected should be related. In this paper, we propose a Kullback-Leibler information (KLI) control chart for linear profiles monitoring in Phase II. The plotted statistics of the KLI chart are calculated based on a backward procedure. The functional relationship is described by linear regression. The performance of the proposed KLI control chart is compared with those of other existing control charts, especially the Generalized Likelihood Ratio (GLR) chart for both KLI and GLR charts do not require design parameters. The results show that (1) the KLI control chart is better than the GLR control chart in detecting the shift of variance in terms of Average Time to Signal, and (2) if the shift of the regression coefficient is small, the GLR chart outperforms the KLI chart, but if the size of shift is large, the KLI chart outperforms the GLR chart. The plotted statistics of KLI are compared to that of GLR. Their similarity is discussed.  相似文献   

15.
Control charts are developed to make the specific quality measures for a successful production process and follow normal distribution behaviors. But some real-life practices do not match such practices and exhibit some positively skewed behavior like lognormal distribution. The present study has considered this situation and proposed a monitoring control chart based on lognormal process variation using a repetitive sampling scheme. This concept proved better for detecting shifts as quickly as possible, and compared with the existing concept, results are elaborated through extensive tables. The average run lengths and standard deviations of the run lengths are being used as a performance evaluation measures and computed by using Monte Carlo simulations performed in R language. A real-life situation has been discussed in the example section to strengthen the proposed control chart concept in a real-life situation.  相似文献   

16.
The homogeneously weighted moving average (HWMA) control chart is famous to identify small deviations in the process mean. The plotting statistic of the HWMA chart assigns equal weight among the previous samples as compared to the plotting statistic of the exponentially weighted moving average chart. We propose a new HWMA chart that uses the plotting statistic of the cumulative sum chart. The run length performance of the proposed chart is measured in terms of the average, the standard deviation, some percentile points, and compared with some existing counterparts' charts. The comparison shows that the proposed chart performs superior to their existing counterparts. An application based on a real-life dataset is also presented.  相似文献   

17.
Time between events (TBE) charts are used in high-yield processes where the rate of occurrences is very low. In the current article, we propose a triple exponentially weighted moving average control chart to monitor TBE (regarded as triple exponentially weighted moving average TEWMA-TBE chart) modeled by a gamma distribution. One- and two-sided schemes of the proposed chart are designed and compared with the double EWMA DEWMA-TBE and EWMA-TBE charts. It is shown that the lower- and two-sided TEWMA-TBE charts outperform its competitors, especially for small to moderate downward shifts, while the upper-sided TEWMA-TBE chart has very good detection ability for small shifts. We also study the robustness of the proposed chart when the true distribution is a Weibull or a lognormal and it is found that the TEWMA-TBE chart has better robustness properties than its competitors, especially for small shifts. Two illustrative examples from airplane accidents and earthquakes are also provided to display the application of the proposed chart.  相似文献   

18.
A control chart is a simple yet powerful tool that is extensively adopted to monitor shifts in the process mean. In recent years, auxiliary‐information–based (AIB) control charts have received considerable attention as these control charts outperform their counterparts in monitoring changes in the process parameter(s). In this article, we integrate the conforming run length chart with the existing AIB double sampling (AIB DS) chart to propose an AIB synthetic DS chart for the process mean. The AIB synthetic DS chart also encompasses the existing synthetic DS chart. A detailed discussion on the construction, optimization, and evaluation of the run length profiles is provided for the proposed control chart. It is found that the optimal AIB synthetic DS chart significantly outperforms the existing AIB Shewhart, optimal AIB synthetic, and AIB DS charts in detecting various shifts in the process mean. An illustrative example is given to demonstrate the implementation of the existing and proposed AIB control charts.  相似文献   

19.
Monitoring changes in the Weibull mean and variance simultaneously is of interest in quality control. The mean and variance of a Weibull process are determined by its shape and scale parameters. Most studies are focused on monitoring the Weibull scale parameter with fixed shape parameter or the Weibull shape parameter with fixed scale parameter. In this paper, we propose an exponentially weighted moving average chart based on the likelihood‐ratio test and an inverse error function called ELR chart to monitor changes in the Weibull mean and variance simultaneously. The simulation approach is used to derive the average run length. We compare our proposed chart with other existing control charts for 3 cases, including scale parameter changes with fixed shape parameter, shape parameter changes with fixed scale parameter, and both parameters changes. The results show that the ELR chart outperforms the other control charts in terms of average run length in most cases. Two numerical examples are used to illustrate the applications of the proposed control chart.  相似文献   

20.
We present a method to design control charts such that in‐control and out‐of‐control run lengths are guaranteed with prespecified probabilities. We call this method the percentile‐based approach to control chart design. This method is an improvement over the classical and popular statistical design approach employing constraints on in‐control and out‐of‐control average run lengths since we can ensure with prespecified probability that the actual in‐control run length exceeds a desired magnitude. Similarly, we can ensure that the out‐of‐control run length is less than a desired magnitude with prespecified probability. Some numerical examples illustrate the efficacy of this design method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号