首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A two-color laser photometric measurement system was used to follow birefringence changes in annealing of prestretched PET films. This technique was shown to be capable of detecting large retardation (and thus birefringence) changes beyond one wavelength of the light. The use of green and red lasers in the photometric system allows the detection of the reversals in birefringence during the course of annealing. Unless critical orienialion/erystallinity levels are developed by stretching the films, heat setting the films at temperatures close to glass transition temper ature results in complete elimination of preferential orientation. At Intermediate stretch ratios, crystalline regions form and Ihe acl as anchor points establishing a network for the orienied amorphous chains. These Dims exhibit partial relaxation followed by rapid increase in birefringence due to the accelerating effect of orientation on crystallization. At high stretch ratios, where substantially oriented and strain crystallized structures are obtained, the initial relaxation stage disappears and birefringence continue to increase throughout the heat setting process even at temperatures very close to glass transition temperature. In these films, however, the total change of birefringence decreases as more of the chains are oriented and crystallized in the stretching stage, leaving a smaller fraction of polymer chains to rearrange during Ihe annealing stage. The kinetics of the structural change exhibit a complex behavior and the largest rates of structural changes were observed in films exhibiting intermidiate birefringence levels.  相似文献   

2.
The influence of glutinous rice starch (GRS) content and sodium hexametaphosphate (SHMP) in polyvinyl alcohol (PVOH) films were studied. The increase of GRS content (0–40 wt%) reduced the tensile strength (from 14.3 to 4.3 MPa) and elongation at break (from 183 to 52.5) of PVOH/GRS films. Nevertheless, the modulus of elasticity of PVOH/GRS films increased with GRS content, from 20.3 to 132.83 MPa. SHMP was used as a crosslinking agent, which improved more than 30% of tensile strength and modulus of elasticity of PVOH/GRS films. However, the elongation at break reduced after crosslinking process of the films. The crosslinked film showed better interaction between GRS and PVOH, as demonstrated by scanning electron microscopy. Conversely, the crosslinked films exhibited a lower swelling degree, but a higher gel content compared to uncrosslinked films. J. VINYL ADDIT. TECHNOL., 25:359–365, 2019. © 2019 Society of Plastics Engineers  相似文献   

3.
The stability of seven reactive (one difluoromonochloropyrimidinyl and six monochlorotriazinyl) dyes on cellulose immersed in sodium peroxoborate (PB) solution (UK–TO solution) containing tetraacetylethylenediamine (TAED) was examined using cellulosic films at 60 °C. The extent of dye loss that occurred from the dyed cellulosic films which were immersed in the UK–TO solution without detergent correlated closely to the ratings obtained using the BS 1006 UK–TO wash test. The dye loss that occurred from the dyed cellophane films was attributed to three contributions, namely, alkaline hydrolysis of dye–fibre bonds, oxidative fading of the dye chromophore by peroxides and cellulose degradation accelerated by PB and TAED. The alkaline hydrolysis of the dye–fibre bond and the extent of cellulose degradation in the UK–TO solution were the main contributions to the dye loss; dye oxidation was a minor factor in the dye loss mechanism. The physical bonding of the dye molecules reinforced the covalent dye–fibre bond stability towards the UK–TO solution.  相似文献   

4.
Multifunctional single and triple-layer films exhibiting flexibility, enhanced modulus and gas barrier properties were developed using a soluble polyamide-imide (PAI) in dimethylacetamide (DMAc) with ammonium-modified montmorillonite (MMT, Cloisite 30B) mineral clay. The drying behavior and associated anisotropy development were determined real-time, using a newly developed real-time measurement system. Out-of-plane birefringence development takes place earlier for thinner neat samples caused primarily by increased depletion rate of solvent. Addition of organoclay content resulted in a decrease in evaporation rate of solvent due to planar orientation of well exfoliated nanoplatelets as shown by TEM images and WAXS. This is in agreement with the out-of-plane anisotropy development observed during drying. Beyond a critical solid wt%, out-of-plane birefringence started to increase earlier with organoclay addition. In the case of multi-layer organoclay reinforced PAI films, the drying behavior of each individual layer was tracked and a complementary drying model is proposed. Planar orientation of nanoplatelets resulted in high helium-barrier properties.  相似文献   

5.
《国际聚合物材料杂志》2012,61(3-4):145-153
Abstract

Destruction of the thin dyed polymeric films under the action of resonant and non-resonant laser radiation has been investigated. It is shown thai laser stability of dyed polymers depends on the type of incorporated dye and it is independent of film thickness and dye concentration at the same powers of absorbed laser radiation. Moreover, laser stability of polymeric films with chemically bonded dye is higher than the polymer stability with dissolved dye. Comparative analysis showed that the polymer laser stability is determined by the kinetics of the polymer thermodegradation. which results in the appearance and accumulation of the products absorbing laser radiation. It is established that resonant irradiation of dyed polymers is considerably more efficient for polymer destruction than the nonresonant one.  相似文献   

6.
Multilayer films for food packaging applications composed of polyvinyl alcohol (PVOH) as the core layer and polyhydroxyalkanoate (PHA) as the outer skin layers were produced by the co‐extrusion process. Rheological properties of PVOH and PHA were performed and analyzed before co‐extruding into a cast film. Analysis of the rheological data indicated the processing temperatures and grades of the PVOH and PHA polymers that would produce similar viscosity and melt flow properties. To improve adhesion of the layers, PHA was grafted with maleic anhydride using a dicumyl peroxide initiator to provide a tie layer material, which improved the peel strength of the PHA and PVOH layers by over 2×. Oxygen transmission rate (OTR) testing showed that the multilayer sample provided an OTR of 27 cc/m2‐day at 0% relative humidity (RH) and rates of 41 and 52 cc/m2‐day at relative humidity values of 60% and 90% RH, respectively. This indicates significant barrier performance enhancement over monolayer PVOH that provided an OTR of 60 cc/m2‐day at 0% RH and 999 cc/m2‐day at 60% RH. Biodegradation testing of the films in the marine environment showed that both the unmodified and maleated PHA polymers displayed high levels of mineralization, whereas the PVOH material did not. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Non-linear optical (NLO) dyes used as guests in polymeric films have recently attracted interests in optical applications. In this regard, dye-grafted polymeric systems can outperform conventional guest?Chost dye-containing films because they have lower loading limitations and aggregation problems. These give rise to enhanced molecular orientation. The work presented here is an attempt to study the laser-induced birefringence for a novel sol?Cgel based polymeric nanocomposite prepared by reacting an NLO dye (methyl red) and an epoxy silane coupling agent at different concentrations of dye. 3-Glycidoxy propyltrimethoxysilane was hydrolyzed and condensed to prepare a siloxane structure from which a dye-containing hybrid was obtained. The structural and morphological properties of the resulting nanocomposites were studied by FTIR spectroscopy, differential scanning calorimetry and transmission electron microscopy. Results showed that the dye was chemically attached to the siloxane structure built through sol?Cgel processing. This chemical modification leads to nanostructured morphology in which inorganic phase was entangled to the organic phase. The size of clusters formed was 60?C80?nm in dimension. The optical responses of nanocomposites were investigated at different process parameters, including dye concentration, film thickness and curing regimes. These were then discussed based on the photochemical and photothermal properties of the dye molecules, the rotation dynamic of which was shown to strongly depend on the physical and chemical properties of the host. The samples with 8 wt% of dye revealed the maximum birefringence, while the sample with 10 wt% showed the best memory effect. The best condition for curing was found to be 24?h. By increasing the film thickness, there was an increase in the amount of induced birefringence.  相似文献   

8.
The main objective of this work was to compare the colour of different pretreated (alkaline, acidic and enzymatic) and dyed (conventional and ultrasonic-assisted) flax fibres, to establish the impact of various parameters on dyeing kinetics. Flax fibres were dyed using two direct dyes of different chemical structures and molecular mass. Diffusion profiles were established by the application of Fick's Law and dyeing behaviour was studied by means of online spectrophotometry. Finally, the dyed samples were colorimetrically evaluated and colour differences and colour strengths were subsequently calculated. The results provided evidence that a dye molecule's size has a greater influence on the exhaustion degree, migration and diffusion than individual pretreatment processes. The determined diffusion coefficients indicated superior dye mobility and faster diffusion into the fibres when ultrasonic power was used in comparison with conventional process. Nevertheless, the colour depth obtained was found to be low after ultrasonic dyeing using a larger dye molecule, implying part degradation of CI Direct Red 80 (and total degradation of small-size dyestuff, CI Direct Red 81).  相似文献   

9.
The investigation of aerogels made from cellulose nanofibers and poly(vinyl alcohol) (PVOH) as a polymeric binder is reported. Aerogels based on different nanocellulose types were studied to investigate the influence of the nanocellulose dimensions and their rigidity on the morphology and mechanical properties of the resulting aerogels. Thus, cellulose nanocrystals (CNCs) with low (10), medium (25), and high (80) aspect ratios, isolated from cotton, banana plants, and tunicates, respectively, microfibrillated cellulose (MFC) and microcrystalline cellulose (MCC) were dispersed in aqueous PVOH solutions and aerogels were prepared by freeze‐drying. In addition to the cellulose type, the PVOH‐ and the CNC‐concentration as well as the freeze‐drying conditions were varied, and the materials were optionally cross‐linked by an annealing step or the use of a chemical cross‐linker. The data reveal that at low PVOH content, rigid, high‐aspect ratio CNCs isolated from tunicates afford aerogels that show the least amount of shrinking upon freeze‐drying and display the best mechanical properties. However, with increasing concentration of PVOH or upon introduction of a chemical cross‐linker the differences between materials made from different nanocellulose types decrease. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41740.  相似文献   

10.
The brittleness of poly(styrene maleic anhydride) (SMA) was improved by compositing with elastic poly(methyl methacrylate‐butadiene‐styrene) (MBS) to develop it into optical film. Transparent and flexible SMA films were prepared, and the flexibility of them was checked by folding endurance test and folding bend. The transparence of SMAMBS films were proved by the transmittance and haze measurements. In actual view, the letters could be clearly observed while they were covered by prepared films. The thermal stability of them was confirmed by DSC and TGA analysis. These physical properties of films are comparable to that of polycarbonate which is widely used as optical film. Besides of these, mechanical and fracture properties of them were found to be also suitable for this purpose. Furthermore, negative birefringence could be obtained by orientationally stretching them. Such results indicate that, films prepared from composites are competent for negative birefringence optical compensator in the field of liquid crystal display. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Nylon 66 films were dyed in aqueous dye‐bath with C. I. Acid Blue 25 (1‐amino‐4‐(aminophenyl)‐2‐anthraquinone sodium sulfonate) at various pH values ranging from 2.0 to 7.0. Films were exposed to polychromatic irradiation (λ ⪈ 290 nm) at 60°C in air. The extent of photo‐oxidation was monitored by FT‐IR spectroscopy. Fading of dye with polychromatic irradiation was monitored by UV spectroscopy. We observed a peculiar effect of dye‐bath pH on the photostability of dyed nylon 66. Samples were more stable when dyed at pH 3 and above that (up to pH 7), whereas the samples dyed at pH < 3.0 showed sensitized photo‐oxidative degradation in nylon 66. Formation of quaternary ammonium salt on dye‐chromophore was considered responsible for the pH‐controlled behavior of anthraquinone acid dyes. The dyeing pH significantly effects the photofading behavior of dyed samples. The effect of dye‐bath pH on photofading of the dyed samples was more pronounced at lower dyeing pH and prevailed up to pH 4. The hydronium ion concentration was considered to be responsible for the enhanced fading of dye for the samples dyed at the lower pH.  相似文献   

12.
The fabrication of poly(ethylene terephthalate), PET, into fibers, films, and containers usually involves molecular orientation caused by molecular strain, which may lead to stress- or strain-induced crystallization (SIC). The SIC of PET was studied by the methods of birefringence, density, thermal analysis, light scattering, and wide-angle X-ray. The development of crystallinity is discussed in relation to the rate of crystallization, the residual degree of orientation, and stress relaxation. The experimental procedure involves stretching samples at temperatures above the glass transition temperature, Tg, to a given extension ratio and at a specific strain rate of an Instron machine. At the end of stretching, the sample is annealed in the stretched state and at the stretching temperature for various periods of time, after which the sample is quickly quenched to room temperature for subsequent measurements. During stretching, the stress strain and the stress relaxation curves are recorded. The results indicate that the SIC of annealed, stretched PET can proceed in three different paths depending on the residual degree of orientation. At a low degree of residual orientation, as indicated by the birefringence value, annealing of stretched PET leads only to molecular relaxation, resulting in a decrease of birefringence. At intermediate orientation levels, annealing causes an initial decrease in birefringence followed by a gradual increase and finally a leveling off of birefringence after a fairly long period of time. At higher orientation levels, annealing causes a rapid increase in birefringence before leveling off. The interpretation of the above results is made using the measurements of light scattering, differential scanning calorimetry, and wide-angle X-ray. The rate of the SIC of PET is also discussed in terms of specific data analysis.  相似文献   

13.
The graft copolymerization of acrylic acid onto low‐density polyethylene films by simultaneous γ‐ray irradiation was carried out. The effect of water and ethanol as grafting solvents on the distribution of grafted poly (acrylic acid) in the low‐density polyethylene films was studied with optical microscopy observations of dyed and sliced samples and attenuated total reflection/Fourier infrared spectroscopy analysis. When no vigorous homopolymerization occurred, both polyethylene and poly(acrylic acid) existed in the grafted layer, and the thickness of the grafted layer and the poly(acrylic acid) concentration in the grafted layer increased with an increasing degree of grafting, regardless of the grafting conditions, the former increasing faster than the latter. In comparison with water as the solvent, in the absence of the inhibitor, homopolymerization could be suppressed to a certain degree in the ethanol solvent system, whereas in the presence of the inhibitor, obvious homopolymerization occurred at a lower monomer concentration, and both the degree of grafting and the thickness of the grafted layer were lower. Such differences could be explained by the chain transfer and the relatively low solubility of poly(acrylic acid) in ethanol. In addition, an experimental scheme using optical microscopy to observe the dyed and sliced polymers was optimized. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1570–1577, 2007  相似文献   

14.
Two types of the nitrocellulose (NC)‐coated cellophane films, denoted 335 MS films (uncolored) and 335 MSC films (dyed with C.I. Direct Red 81), were incubated with Shewanella J18 143 for a period of 1 month at 50°C. The colored films were decolorized by Shewanella strain throughout this process. Changes in the NC coating of the films were studied by FTIR analysis, by determination of the surface wettability, and by ESEM evaluations. The colored films that were exposed to the Shewanella culture and decolorized, lost a significant amount of nitrate groups and became enriched in the hydroxyl group content. Moreover, the critical surface tension of the colored NC‐coated cellophane films increased, from 18.7 mN/m, for the original films, to 33.1 mN/m, for the film that was treated by the Shewanella strain. Unlike the colored film, the uncolored NC‐coated films did not give any considerable changes in their NC coating when exposed to the Shewanella culture, for the same time period. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Film casting and biaxial stretching of a series of polyester thermoplastic elastomers (TPEs) were studied. Biaxial orientation in the stretched films was characterized by wide‐angle X‐ray diffraction and birefringence measurements. Biaxial orientation factors were determined. The X‐ray diffraction and birefringence clearly indicated the development of planar biaxial orientation in the stretched films with biaxial stretching. The phenyl groups in the stretched PBT and TPE films gradually became more parallel to the film surfaces with increasing biaxial orientation. The lower the PBT content in the stretched TPE films, the lower the planar biaxial orientation achieved. The β form of crystalline PBT was found only in the stretched PBT films, but not in the TPE films.  相似文献   

16.
Poly(ethylene terephtalate), PET, can be modified with N,N‐dimethylacrylamide to obtain a better incorporation of disperse dye (Disperse Blue 79). Minimal variations in the decomposition at 10% level, melting, and glass transition temperatures, show that the thermal stability of modified PET films does not change when compared to nonmodified PET. The atomic force images show nanopeaks formation on the surface due to the modification. Modified PET films show a decrease in the contact angle and then, an increase in the superficial tension measurements, when compared to the value of 37 ± 1 dynes · cm−1(nonmodified), with values liying in the range of 42–46 ± 0.5 dynes · cm−1. The data obtained by photoacoustic spectroscopy (PAS) for dyed PET films show a dye peak at 580 nm. The data analysis of the peak area show that PET films modified with N,N‐dimethylacrylamide for 15 min at 85°C, dyed for 6 h at 85°C with a dye concentration of 0.333 g/L, incorporate three times more dye than the nonmodified films dyed in the same conditions. By the data obtained from PAS, it was possible to calculate the depth profile of dyeing with values around 54 μm. Factorial analyses show that the dyeing time was the most important variable. The major amount of incorporated dye was obtained by the following combination of variables: temperature and time of modifier treatment were, respectively, 72.5°C and 15 min; time and temperature of dyeing were, respectively, 90°C and 195 min for a dye concentration of 0.133 g/L. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 269–282, 2000  相似文献   

17.
A series of biodegradable polymer films based on poly(vinyl alcohol) (PVOH) and jackfruit waste flour (JWF) was prepared in the presence of water and glycerol and cast by a solution casting method. The JWF was introduced as a promoter of biodegradability. The blended films were evaluated for their tensile properties, water absorption, water vapor transmission rate (WVTR), and degradation behavior under different environmental conditions such as natural weathering and natural soil. The tensile strength (1.7–6.4 MPa) and elongation at break (13–108%) of the PVOH/JWF films were lower than those of unfilled PVOH film (26MPa and 238%). However, the Young's modulus values (157–196 MPa) of the PVOH/JWF films were higher than that of unfilled PVOH film (137 MPa). The PVOH/JWF blended films showed higher water absorption and WVTR, which increased with increasing JWF content. Biodegradability tests revealed that the presence of JWF stimulated the degradation rate and caused the weight loss and reduction in tensile properties of the PVOH/JWF blended films. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
A new approach to the dyeing of cotton fabrics using an electrostatic self‐assembly method was evaluated. Cotton fabrics were pretreated with 2,3‐epoxypropyltrimethylammonuium chloride and cationic charges were produced on the fabric surfaces. For the dyeing of cotton fabric, reactive and acid dyes were used. Oppositely charged anionic reactive/acid dyes and cationic poly(diallyldimethylammonium chloride) were alternately deposited on the surface of cationised cotton fabrics. Ten multilayer films of dye/poly(diallyldimethylammonium chloride) were deposited on the cotton fabric surfaces using a padder. The build‐up of the multilayer films and the level of colour strength (K/S) achieved are discussed. Samples of cotton fabrics were also dyed with the same dyes, but using the exhaust method, and both types of dyed samples were compared. The washing, rubbing and light fastness properties were evaluated for the dyed fabrics.  相似文献   

19.
In the present work, an attempt has been made to study the development of morphology during extrusion and uniaxial stretching of polypropylene (PP) films and filaments at corresponding conditions. Dies for extrusion of films and filaments were designed to achieve similar extrusion velocity and shear rates. Orientation in films and fibers of PP produced from these dies was determined by birefringence and wide-angle X-ray diffraction (WAXD). The degree of crystallinity was determined by density and WAXD. The superstructure developed during extrusion was studied in films by small-angle light scattering. It was inferred that films and fibers prepared under similar conditions would produce similar morphology. Hence, films can be characterized by optical techniques when it is difficult to study fibers. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
We present an experimental study of real time true stress–strain–birefringence measurements to elucidate the sequence of structural mechanisms that occur during simultaneous biaxial stretching of PET films from amorphous precursors in rubbery state. Stress–birefringence relationship, wide angle X-ray diffraction, Raman spectroscopy and DSC thermal analysis were used to identify the stages of the mechano-optical behavior of the films during stretching, and to identify their structural origins. The measurements revealed four regimes for the relationship between the stress and birefringence. In the first regime the stress has a linear relationship with birefringence where the linear stress optical rule holds and the stress optical constant for PET is 5.8 GPa−1 (5800 Brewster). In the second regime, the relationship is also nearly linear with a steeper positive slope, and in the third regime the relationship is nonlinear. At very high stretching rates, a fourth stage could be seen, where the stress increases while the birefringence reaches a plateau. This stage is reached when the polymer chains attain their finite extensibilities. This stage was not observed if low rates of stretching employed, where high relaxation movements dominate the orientation effects. The deviation from the initial linear stress optical rule coincides with the onset of the stress-induced crystallization as revealed by the off line measurements. This transition was found to be rate dependent and increased rate delays this transition to higher stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号