首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
To maintain and improve the quality of the processes, control charts play an important role for reduction of variation. To detect large shifts in the process parameters, Shewhart control charts are commonly applied but for small shifts, exponentially weighted moving averages (EWMA), cumulative sum (CUSUM), double exponentially weighted moving average (DEWMA), double CUSUM, moving average (MA), double moving average (DMA), and progressive mean (PM) control charts, are used. This study proposes double progressive mean (DPM) and optimal DPM control charts to enhance the performance of the PM chart. As the proposed DPM control charts use information sequentially, hence their performance is compared with natural competitors EWMA, CUSUM, DEWMA, double CUSUM, MA, DMA, and PM control charts. Run length and its different properties are evaluated to compare the performance of the proposed charts and counterparts. Results reveal that proposed optimal DPM outperforms the other charts. An example related to voltage on fixed capacitance level is also provided to illustrate the proposed charts.  相似文献   

2.
In the service and manufacturing industry, memory-type control charts are extensively applied for monitoring the production process. These types of charts have the ability to efficiently detect disturbances, especially of smaller amount, in the process mean and/or dispersion. Recently, a new homogeneously weighted moving average (HWMA) chart has been proposed for efficient monitoring of smaller shifts. In this study, we have proposed a new double HWMA (DHWMA) chart to monitor the changes in the process mean. The run length profile of the proposed DHWMA chart is evaluated and compared with some existing control charts. The outcomes reveal that the DHWMA chart shows better performance over its competitor charts. The effect of non-normality (in terms of robustness) and the estimation of the unknown parameters on the performance of the DHWMA chart are also investigated as a part of this study. Finally, a real-life industrial application is offered to demonstrate the proposal for practical considerations.  相似文献   

3.
SUBJECTS INDEX     
Exponentially weighted moving average (EWMA) control charts are very widely used for the detection of small shifts. Another similar charting structure is double EWMA (DEWMA) control chart for the improved detection of the shifts. Many interesting features of EWMA and DEWMA have been described in the literature. This study intends to investigate EWMA and DEWMA control charts under Type-I censoring for gamma-distributed lifetimes. The idea of conditional expected values is used to monitor the mean level. The performance evaluations are carried out using average run length as a measure in this study. The optimum sample size comparisons for the specified and unspecified parameter are also part of the study. To assess the overall performance of the control charts, we also used extra quadratic loss and it is found DEWMA is an efficient chart for the detection of shift in scale parameter. Moreover, an illustrative example for practical considerations is included in the study. It is observed that varying censoring rates affect the performance of the chart depending upon the type of chart, the method of estimation, and the amount of shift.  相似文献   

4.
The control chart is a very popular tool of statistical process control. It is used to determine the existence of special cause variation to remove it so that the process may be brought in statistical control. Shewhart‐type control charts are sensitive for large disturbances in the process, whereas cumulative sum (CUSUM)–type and exponentially weighted moving average (EWMA)–type control charts are intended to spot small and moderate disturbances. In this article, we proposed a mixed EWMA–CUSUM control chart for detecting a shift in the process mean and evaluated its average run lengths. Comparisons of the proposed control chart were made with some representative control charts including the classical CUSUM, classical EWMA, fast initial response CUSUM, fast initial response EWMA, adaptive CUSUM with EWMA‐based shift estimator, weighted CUSUM and runs rules–based CUSUM and EWMA. The comparisons revealed that mixing the two charts makes the proposed scheme even more sensitive to the small shifts in the process mean than the other schemes designed for detecting small shifts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The exponentially weighted moving average (EWMA) control chart is a memory-type chart known to be more efficient in detecting small and moderate shifts in the process parameter. The double EWMA (DEWMA) chart is an extension of the EWMA chart that is more effective than the latter in the detection of small-to-moderate shifts. This paper proposes a new distribution-free (or nonparametric) triple EWMA (TEWMA) control chart based on the Wilcoxon rank-sum (W) statistic to improve the detection ability in the process location parameter. Moreover, a new fast initial response (FIR) feature is added to further improve the sensitivity of the new TEWMA chart. The performance of the proposed TEWMA chart with and without FIR features is compared to those of the existing EWMA and DEWMA W charts. It is observed that the TEWMA chart with and without FIR features is superior to the competing charts in most situations. A real-life illustration is provided to show the application and implementation of the new chart.  相似文献   

6.
Monitoring disturbances in process dispersion using control chart is mostly based on the assumption that the quality characteristic follows normal distribution, which is not the case in many real-life situations. This paper proposes a set of new dispersion charts based on the homogeneously weighted moving average (HWMA) scheme, for efficient detection of shifts in process standard deviation (σ). These charts are based on a variety of σ estimators and are investigated for normal as well as heavy tailed symmetric and skewed distributions. The shift detection ability of the charts is evaluated using different run length characteristics, such as average run length (ARL), extra quadratic loss (EQL), and relative ARL measures. The performance of the proposed HWMA control charts is also compared with the existing EWMA dispersion charts, using different design parameters. Furthermore, an illustrative example is presented to monitor the vapor pressure in a distillation process.  相似文献   

7.
Shewhart, exponentially weighted moving average (EWMA), and cumulative sum (CUSUM) charts are famous statistical tools, to handle special causes and to bring the process back in statistical control. Shewhart charts are useful to detect large shifts, whereas EWMA and CUSUM are more sensitive for small to moderate shifts. In this study, we propose a new control chart, named mixed CUSUM‐EWMA chart, which is used to monitor the location of a process. The performance of the proposed mixed CUSUM‐EWMA control chart is measured through the average run length, extra quadratic loss, relative average run length, and a performance comparison index study. Comparisons are made with some existing charts from the literature. An example with real data is also given for practical considerations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Exponentially weighted moving average (EWMA) control charts are consistently used for the detection of small shifts contrary to Shewhart charts, which are commonly used for the detection of large shifts in the process. There are many interesting features of EWMA charts that have been studied for complete data in the literature. The aim of present study is to introduce and compare the double exponentially weighted moving average (DEWMA) and EWMA control charts under type‐I censoring for Poisson‐exponential distribution. The monitoring of mean level shifts using censored data is of a great interest in many applied problems. Moreover, a new idea of conditional median is introduced and further compared with the existing conditional expected values approach for monitoring the small mean level shifts. The performance of the DEWMA and EWMA charts is evaluated using the average run length, expected quadratic loss, and performance comparison index measures. The optimum sample size comparisons for the specified and unspecified parameters are also part of this study. Two applications for practical considerations are also discussed. It is observed that different censoring rates and the size of shifts significantly affect the performance of the EWMA and DEWMA charts. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) charts are popular statistical tools to improve the performance of the Shewhart chart in detecting small process shifts. In this study, we propose the mixed generally weighted moving average (GWMA)‐CUSUM chart and its reverse‐order CUSUM‐GWMA chart to enhance detection ability compared with existing counterparts. The simulation revealed that the mixed GWMA‐CUSUM and mixed CUSUM‐GWMA charts have the sensitivity to detect small process shifts and efficient structures compared with the mixed EWMA‐CUSUM and mixed CUSUM‐EWMA charts, respectively. Moreover, the mixed GWMA‐CUSUM chart with a large design parameter has robust performance, regardless of the high tail t distribution or right skewness gamma distribution.  相似文献   

10.
Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are commonly used for monitoring the process mean. In this paper, a new hybrid EWMA (HEWMA) control chart is proposed by mixing two EWMA control charts. An interesting feature of the proposed control chart is that the traditional Shewhart and EWMA control charts are its special cases. Average run lengths are used to evaluate the performances of each of the control charts. It is worth mentioning that the proposed HEWMA control chart detects smaller shifts substantially quicker than the classical CUSUM, classical EWMA and mixed EWMA–CUSUM control charts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Control charts are widely used for process monitoring. They show whether the variation is due to common causes or whether some of the variation is due to special causes. To detect large shifts in the process, Shewhart‐type control charts are preferred. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are generally used to detect small and moderate shifts. Shewhart‐type control charts (without additional tests) use only current information to detect special causes, whereas CUSUM and EWMA control charts also use past information. In this article, we proposed a control chart called progressive mean (PM) control chart, in which a PM is used as a plotting statistic. The proposed chart is designed such that it uses not only the current information but also the past information. Therefore, the proposed chart is a natural competitor for the classical CUSUM, the classical EWMA and some recent modifications of these two charts. The conclusion of this article is that the performance of the proposed PM chart is superior to the compared ones for small and moderate shifts, and its performance for large shifts is better (in terms of the average run length). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Measurement error is often occurred in statistical process control. The effect of a linearly covariate error model on the exponentially weighted moving average (EWMA) median and cumulative sum (CUSUM) median charts is investigated. The results indicate that the EWMA median and CUSUM median charts are significantly affected in the presence of measurement errors. We compared the performance of the EWMA median and CUSUM median charts by using Markov chain method in the average run length and the standard deviation of the run length. We concluded that the CUSUM median chart for small shifts and the EWMA median chart for larger shifts are recommended. Two examples are provided to illustrate the application of the EWMA and CUSUM median charts with measurement errors.  相似文献   

13.
A control chart is a graphical tool used for monitoring a production process and quality improvement. One such charting procedure is the Shewhart‐type control chart, which is sensitive mainly to the large shifts. For small shifts, the cumulative sum (CUSUM) control charts and exponentially weighted moving average (EWMA) control charts were proposed. To further enhance the ability of the EWMA control chart to quickly detect wide range process changes, we have developed an EWMA control chart using the median ranked set sampling (RSS), median double RSS and the double median RSS. The findings show that the proposed median‐ranked sampling procedures substantially increase the sensitivities of EWMA control charts. The newly developed control charts dominate most of their existing counterparts, in terms of the run‐length properties, the Average Extra Quadratic Loss and the Performance Comparison Index. These include the classical EWMA, fast initial response EWMA, double and triple EWMA, runs‐rules EWMA, the max EWMA with mean‐squared deviation, the mixed EWMA‐CUSUM, the hybrid EWMA and the combined Shewhart–EWMA based on ranks. An application of the proposed schemes on real data sets is also given to illustrate the implementation and procedural details of the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Parametric (or traditional) control charts are based on the assumption that the quality characteristic of interest follows a specific distribution. However, in many applications, there is a lack of knowledge about the underlying distribution. To this end, nonparametric (or distribution-free) control charts have been developed in recent years. In this article, a nonparametric double homogeneously weighted moving average (DHWMA) control chart based on the sign statistic is proposed for monitoring the location parameter of an unknown and continuous distribution. The performance of the proposed chart is measured through the run-length distribution and its associated characteristics by performing Monte Carlo simulations. The DHWMA sign chart is compared with other nonparametric sign charts, such as the homogeneously weighted moving average, generally weighted moving average (GWMA), double GWMA, and triple exponentially weighted moving average sign charts, as well as the traditional DHWMA chart. The results indicate that the proposed chart performs just as well as and in some cases better than its competitors, especially for small shifts. Finally, two examples are provided to show the application and implementation of the proposed chart.  相似文献   

15.
Memory based control charts are developed as alternatives to the Shewhart charts for the detection of small sustaining process shifts. Among the widely used memory control charts are the EWMA (Exponentially Weighted Moving Average), CUSUM (Cumulative Sum), and moving average schemes. Relative to the CUSUM chart, the EWMA and moving average charts are quite basic. The EWMA chart uses a weighted average as the chart statistic while the time-weighted moving average chart is based on unweighted moving average. The moving average statistic of width w is simply the average of the w most recent observations. In this article, the use of one moving average control chart to monitor both process mean and variability. This new moving average chart is efficient in detecting both increases and decreases in mean and/or variability.  相似文献   

16.
In recent years, the memory‐type control charts—exponentially weighted moving average (EWMA) and cumulative sum (CUSUM)—along with the adaptive and dual control‐charting structures have received considerable attention because of their excellent ability in providing an overall good detection over a range of mean‐shift sizes. These adaptive memory‐type control charts include the adaptive exponentially weighted moving average (AEWMA), dual CUSUM, and adaptive CUSUM charts. In this paper, we propose a new AEWMA chart for efficiently monitoring the process mean. The idea is to first design an unbiased estimator of the mean shift using the EWMA statistic and then adaptively update the smoothing constant of the EWMA chart. The run length profiles of the proposed AEWMA chart are computed using extensive Monte Carlo simulations. Based on a comprehensive comparative study, it turns out that the proposed AEWMA chart performs better than the existing AEWMA, adaptive CUSUM, dual CUSUM, and Shewhart‐CUSUM charts, in terms of offering more balanced protection against mean shifts of different sizes. An example is also used to explain the working of the existing and proposed control charts.  相似文献   

17.
The cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been widely accepted because of their fantastic speed in identifying small‐to‐moderate unusual variations in the process parameter(s). Recently, a new CUSUM chart has been proposed that uses the EWMA statistic, called the CS‐EWMA chart, for monitoring the process variability. On similar lines, in order to further improve the detection ability of the CS‐EWMA chart, we propose a CUSUM chart using the generally weighted moving average (GWMA) statistic, named the GWMA‐CUSUM chart, for monitoring the process dispersion. Monte Carlo simulations are used to compute the run length profiles of the GWMA‐CUSUM chart. On the basis of the run length comparisons, it turns out that the GWMA‐CUSUM chart outperforms the CUSUM and CS‐EWMA charts when identifying small variations in the process variability. A simulated dataset is also used to explain the working and implementation of the CS‐EWMA and GWMA‐CUSUM charts.  相似文献   

18.
Several modifications and enhancements to control charts in increasing the performance of small and moderate process shifts have been introduced in the quality control charting techniques. In this paper, a new hybrid control chart for monitoring process location is proposed by combining two homogeneously weighted moving average (HWMA) control charts. The hybrid homogeneously weighted moving average (HHWMA) statistic is derived using two smoothing constants λ1 and λ2 . The average run length (ARL) and the standard deviation of the run length (SDRL) values of the HHWMA control chart are obtained and compared with some existing control charts for monitoring small and moderate shifts in the process location. The results of study show that the HHWMA control chart outperforms the existing control charts in many situations. The application of the HHWMA chart is demonstrated using a simulated data.  相似文献   

19.
Control charts are extensively used in processes and are very helpful in determining the special cause variations so that a timely action may be taken to eliminate them. One of the charting procedures is the Shewhart‐type control charts, which are used mainly to detect large shifts. Two alternatives to the Shewhart‐type control charts are the cumulative (CUSUM) control charts and the exponentially weighted moving average (EWMA) control charts that are specially designed to detect small and moderately sustained changes in quality. Enhancing the ability of design structures of control charts is always desirable and one may do it in different ways. In this article, we propose two runs rules schemes to be applied on EWMA control charts and evaluate their performance in terms of the Average Run Length (ARL). Comparisons of the proposed schemes are made with some existing representative CUSUM and EWMA‐type counterparts used for small and moderate shifts, including the classical EWMA, the classical CUSUM, the fast initial response CUSUM and EWMA, the weighted CUSUM, the double CUSUM, the distribution‐free CUSUM and the runs rules schemes‐based CUSUM. The findings of the study reveal that the proposed schemes are able to perform better than all the other schemes under investigation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The exponentially weighted moving average (EWMA) control chart is a memory chart that is widely used in process monitoring to spot small and persistent disturbances in the process parameter(s). This chart requires normality of the quality characteristic(s) of interest and a smaller choice of smoothing parameter. Any deviations from these conditions affect its performance in terms of efficiency and robustness. For the said two concerns, this study develops a new mixed EWMA chart under progressive setup (mixed EWMA–progressive mean [MEP] chart). The proposed MEP chart combines the advantages of robustness (under nonnormal scenarios) and high sensitivity to small and persistent shifts in the process mean. The performance of the proposed MEP control chart is evaluated in terms of average run length and some other characteristics of run length distribution. The assessment of the proposed chart is made under standard normal, student's t, gamma, Laplace, logistic, exponential, contaminated normal and lognormal distributions. The performance of the proposed MEP chart is also compared with some existing competitors including the classical EWMA, the classical cumulative sum (CUSUM), the homogenously weighted moving average, the mixed EWMA–CUSUM, the mixed CUSUM–EWMA and the double EWMA charts. The analysis reveals that the proposal of this study offers a superior design structure relative to its competing counterparts. An application from substrates manufacturing process (in which flow width of the resist is the key quality characteristic) is also provided in the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号