首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
以制革固体废弃物中提取的胶原为原料、双醛羧甲基纤维素(DCMC)为大分子交联剂,通过冷冻干燥技术制备了DCMC改性胶原气凝胶,利用FTIR和SEM对其结构和形貌进行了表征。结果表明,DCMC的引入不会改变胶原三股螺旋结构,且制得的DCMC改性胶原气凝胶具有丰富的多孔结构、低密度(8.83~10.38mg/cm3)、高孔隙率(94.99~97.65%)和良好隔热性能。当DCMC含量小于15%时,DCMC改性胶原气凝胶的压缩应力随DCMC含量的增加而变大。此外,为进一步提升DCMC改性胶原气凝胶的隔热性能和耐久性,通过真空浸渍法填充相变材料和浸涂法疏水处理,制备出DCMC改性胶原气凝胶复合相变材料。隔热实验、泄露实验和防污实验等实验结果表明,气凝胶复合相变材料相比于气凝胶具有更加优异的隔热效果,拓展了其实际应用范围。  相似文献   

2.
To develop a high thermal conductive composite, an MgO filler was incorporated into a liquid crystalline (LC) epoxy containing a mesogenic moiety. The thermal conductivity of the obtained composite was 1.41 W/(m∙K) at 33 vol% content, which was remarkably higher than the value predicted using Bruggeman's model. To investigate the reason for this significant enhancement of the thermal conductivity in the LC epoxy composites, the LC phase structure of the composite was analyzed by a polarized optical microscope, an X-ray diffractometry (XRD) and a polarized IR mapping measurement. An XRD analysis indicated the local formation of a highly ordered smectic phase structure, even in the high-loading composite. This result indicated the promotion of the self-assembly of the mesogenic network polymer chains by the MgO filler loading. We considered that this highly ordered structural formation can lead to an increase in the matrix resin's thermal conductivity, which can result in the effective enhancement of the thermal conductivity in the LC epoxy/MgO composite.  相似文献   

3.
《Ceramics International》2021,47(19):26738-26747
The exploration of biocompatible materials has received greater significance in the research area of energy storage tools. In the present work, a composite material consisting of carboxymethyl cellulose (CMC) with CuO@MnO2 is synthesized via thermal reduction protocol. The resulting composite material exhibited unique morphology and excellent electrochemical properties. The electrochemical properties were premeditated by CV, GCD, and spectral impedance analysis. Electrochemical analyses of the composite materials indicated the extraordinary specific capacitance in a three-electrode configuration. The composite displayed the value of ~414 F/g at a current density of 0.5 A g−1 and the electrodes retaining 96.2% capacitance after 5000 cycles. Therefore, our study demonstrated the synergistic effect of CuO@MnO2 nanoparticles with porous CMC network structures show enhanced electrochemical properties in the presence of 3 M KOH as an electrolyte.  相似文献   

4.
Fibrillation‐controlled lyocell fibers were developed by crosslinking reactions between dialdehyde cellulose (DAC) and multifunctional amines. DAC lyocell fibers were manufactured by partial oxidation with sodium metaperiodate and were successfully crosslinked with two multifunctional amines by Schiff‐base formation. The amorphous regions and the char formations, which were characterized by differential scanning calorimetry and thermogravimetric analysis, increased with the degree of oxidation. After the crosslinking reactions, an increase in the amorphous regions also appeared, whereas the thermal stability was somewhat improved by the chain crosslinking. These results were in good agreement with viscosity‐average degree of polymerization values in that they diminished with oxidation level and increased with the crosslinking reactions. The water retention value and moisture regain value decreased with the oxidation and crosslinking levels, which implied that the swellability of fibers and the water absorbency in characteristic sites decreased with them. The increase in the dry crease recovery angle also confirmed the presence of hemiacetal crosslinks in the DAC and amine crosslinks between the DAC and the amines. The fibrillation grade of the crosslinked fibers diminished with oxidation level and the amine concentration. In particular, the fibrillation properties of the crosslinked fibers with 4‐hydroxy‐2,4,6‐triaminopyrimidine sulfate salt were more easily controlled than those of the crosslinked fibers with 2,4,6‐triamino‐1,3,5‐triazine. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
A green composite with good mechanical properties and acceptable biodegradability was developed using wood flour and soybean protein that was modified by thermal‐caustic degradation and chemical crosslinking with glyoxal and polyisocyanate (PMDI). Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM) in combination with the traditional evaluations were employed to investigate the structure, morphology, and properties of the crosslinked soybean protein and the crosslinking‐modified wood/soybean protein composites to understand the effects of the crosslinker species on the mechanical properties, water resistance, and microbial biodegradation of soybean protein‐wood flour composites. The results indicated that the chemical crosslinking modification could improve the mechanical properties and water resistance but decrease the biodegradability of the wood/protein composite to a certain extent. Both glyoxal and PMDI alone as crosslinkers could not perfectly modify the soybean protein because of the high reactivity of PMDI and low crosslinking reactivity of glyoxal. The incorporation of glyoxal with PMDI could result in the desired crosslinking efficiency and good interfacial adhesion by compromising the advantages and disadvantages of glyoxal or PMDI alone as crosslinkers, which balanced the performances of the wood flour/soybean protein composite. The preferable combination crosslinker was composed of 50 wt % glyoxal and 50 wt % PMDI. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41387.  相似文献   

6.
Waterborne polyurethane (WPU) and casein (1 : 1 by weight) were blended at 90°C for 30 min, and then were crosslinked by adding 1–10 wt % ethanedial to prepare a series of sheets. Their structure and properties were characterized by using infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, dynamic mechanical analysis, and tensile testing. The results indicated that crosslinked blend sheets exhibited a certain degree of miscibility, and exhibited much higher tensile strength and water resistivity than did the WPU, casein, and the uncrosslinked blend from WPU and casein. When the ethanedial content was 2 wt %, the tensile strength and elongation at break of crosslinked sheets achieved 19.5 MPa and 148% in the dry state, and 5.0 MPa and 175% in the wet state, respectively. A 2 wt % content of ethanedial plays an important role in the enhancement of mechanical properties, thermal stability, and water resistivity of the blends of WPU and casein as a result of intermolecular crosslinking. This work provided a new protein plastic with good water resistivity. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 332–338, 2004  相似文献   

7.
Cellulose nanocrystals (CNCs) have emerged as fillers of interest to the polymer nanocomposite community due to their inherent properties and renewable precursors. However, challenges persist to incorporate CNCs into polymer matrices due to component incompatibility and/or thermal stability limitations of the nanoparticles. Therefore, the objective of this research is to examine the efficacy of different processing methods in producing CNC/polymer composites. In this work, CNCs were incorporated into polyethylene-co-vinyl alcohol (EVOH) using either a solution casting method or a multi-step method involving the same solution casting method followed by a melt mixing step. The resulting neat EVOH and composite materials were characterized to understand how the viscoelastic character and mechanical properties were influenced by CNC loading and processing method. The results of characterization experiments and micromechanical modeling suggested that the nanoparticle networks produced by each method were different and that a combined solution-melt processing method is beneficial in producing composites with improved properties, particularly at higher CNC loadings. This processing strategy may be more broadly applied to other nanocomposites.  相似文献   

8.
Composites were prepared from cellulose acetate (CA) and cellulose nanocrystals (CNC) by melt extrusion using two methods for the introduction of CNC: direct mixing and predispersion in CA solution. CNC were isolated using hydrochloric acid to increase thermal stability allowing the composites to be processed above 150 °C. The effect of CNC dispersion on the composites morphology, thermal, and mechanical properties was investigated. Field emission scanning electron microscopy and transmission electron microscopy results indicated that the predispersion method allows better CNC dispersion and distribution when compared to the direct mixture method. In addition, predispersion promotes preferential CNC orientation in relation to the injection flow. The predispersion method also showed a 14% Young's modulus increase in composites containing 15 wt % CNC while no significant change was observed when using the direct mixing. The results obtained in this work show that, to achieve the percolation threshold, nanoparticle distribution is as important as their content. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44201.  相似文献   

9.
Different sizes of epichlorohydrin‐crosslinked carboxymethyl cellulose (E/CMC) microspheres were successfully prepared by an inverse suspension method. With further modification by monochloroacetic acid (MCA), MCA–E/CMC microspheres were successfully synthesized. The structures and morphologies of these microspheres were analyzed with polarizing microscopy, scanning electron microscopy, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller analysis, and laser particle ζ‐potential recording. The adsorption properties of the microspheres were investigated with methylene blue (MB) as a model pollutant. The highest adsorption amount of MB (998.2 mg/g) onto MCA–E0.7/CMC which was the samples which treated with 0.7 mL of C4H9OH was obtained. Meanwhile, the effect of the operating parameters, such as the contact time, initial pH of the solution, temperature, and initial dye concentration, on the adsorption amount and MB removal were systematically studied. The results show that pseudo‐second‐order kinetic model provided the best correlation with the experimental data for the adsorption of MB onto the MCA–E0.7/CMC microspheres. Both the physical and chemical adsorption played the main role in the adsorption process. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44363.  相似文献   

10.
Using proper flame-retardant materials when constructing buildings or fabricating devices is the most important fire safety guidelines. The halogen and phosphorus-based compounds are among the most effective flame retardants. However, most of these compounds are recognized to have a harmful effect on human body and the environment during combustion. In this context, we designed and synthesized a new eco-friendly flame-retardant nanocomposite by combining dialdehyde cellulose (DAC) and amino-functionalized mesoporous silica MCM-41 (N-M41). Spherical N-M41 nanoparticles have been successfully prepared in one-pot reaction using tetraethyl orthosilicate and (3-aminopropyl)triethoxysilane (APTES), and then coated with different amounts of DAC through Schiff base reaction between the carbonyl group of DAC and NH2 of APTES. The resulted DAC@N-M41 nanocomposite was characterized by XRD, Fourier transform infrared, scanning electron microscopy, transmission electron microscopy, differential thermal analysis (DTA) and thermogravimetry analysis (TGA). TEM micrographs revealed that this nanocomposite was made up of core-shell nanospheres structure with narrow size distribution (ca. 140 nm). DTA and TGA analysis revelated that the presence of silica within the nanocomposite can effectively increase the char yield, decrease the heat release, and improve the fire performance of the prepared nanocomposite. A mechanism of the reduction in flammability of this nanocomposite has been proposed.  相似文献   

11.
以竹浆纤维为原料,基于机械力化学法,在高碘酸钠氧化下一步法制备双醛基微纤化纤微素(dialdehyde microfibrillated cellulose,D-MFC),再与明胶交联构筑基于席夫碱键的D-MFC/明胶复合膜。采用透射电子显微镜(TEM)、傅里叶变换红外光谱分析仪(FTIR)、扫描电子显微镜(SEM)、热分析仪(TGA)和质构仪等对D-MFC和D-MFC/明胶复合膜的官能团、形貌结构、热稳定性和力学性能等进行表征与分析。结果表明,机械力化学法制备的D-MFC直径在10~50nm,长度在微米级,醛基含量为0.237mmol/g。D-MFC在复合膜中具有良好的分散性,D-MFC上的醛基与明胶中的氨基发生反应,形成席夫碱键,从而提高复合膜的热稳定性、拒水性和力学性能。当D-MFC添加量为2.0g时,其拉伸强度可达189.1MPa,最大热失重速率温度为338℃,吸湿率降低至11.14%。采用机械力化学法制备D-MFC具有工艺简便、绿色环保的优点,该生物质复合膜在生物医用材料领域具有潜在的应用价值。  相似文献   

12.
Carboxymethyl chitosan, a water soluble chitosan derivative, was prepared from chitosan using monochloroacetic acid. Carboxymethyl chitosan/cellulose acetate microspheres (CCM) were prepared using the method of W/O/W and emulsification solvent evaporation as drug delivery system. The CCMs prepared were spherical, free‐flowing, and nonaggregated with the smooth appearance and many small pores on the surface. All CCMs prepared had sustained release efficiency for acetaminophen and the optimal formulation was that carboxymethyl chitosan of 2.0% and 1360 KD. In addition, the release rate of drug from CCMs in dilute hydrochloric acid was much slower than that in phosphate buffer saline (pH 6.8) during 24 h. It is illustrated that the drug loaded in CCMs released slower in simulated gastric fluid than that in simulated intestinal fluid. Furthermore, the drug release data showed better fitness with the first order model which indicated that the drug release from CCMs was depended on the drug concentration in the polymeric networks. And the release of drug from CCMs indicated diffusion‐controlled drug release based on Fickian diffusion and accompanied with anomalous transport (i.e., non‐Fickian diffusion) according to the values obtained from Higuchi model and Peppas models. So it was shown that the CCMs might be an ideal sustained release system for acid‐labile drugs both for the solubility of carboxymethyl chitosan and the release media. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42152.  相似文献   

13.
Rheological properties of carbon nanfiber/polypropylene composites were investigated. CNFs synthesized at 600°C were thermally modified at 2200°C. These CNFs with a curl/twisted morphology were incorporated into polypropylene (PP) by intensive mixing. The untreated CNF composites showed higher dynamic moduli, G′ and G″, than the heat-treated CNF composites. Also, stress relaxation results indicated that untreated CNF composites were relaxed in a longer time than heat-treated CNF composites. These results support that the untreated CNF composites needed less CNFs to perform CNF-CNF network than the heat-treated CNF composites did. It is suggested that structural changes can be verified by rheological analyses.  相似文献   

14.
With anionic waterborne polyurethane (WPU) as a plasticizer and ethylene glycol diglycidyl ether (EGDE) as a crosslinker, we successfully prepared crosslinked soy protein isolate (SPI) plastics. Anionic WPU was mixed with SPI and EGDE in an aqueous dispersion at room temperature. The mixed aqueous dispersion was cast and cured, and the obtained material was pickled and hot‐pressed to produce the crosslinked SPI/WPU sheets. The resulting sheets containing about 60 wt % SPI were characterized with infrared spectroscopy, scanning electron microscopy, atomic force microscopy, dynamic mechanical analysis, and tensile testing, and biodegradation testing of the sheets was performed in a mineral salt medium containing microorganisms. The results revealed that the crosslinked SPI/WPU plastics with EGDE concentrations of 2–4 wt % possessed high miscibility, good mechanical properties, and water resistivity. In addition, the crosslinked sheets could be biodegraded, and the half‐life of the biodegradation for a sheet crosslinked with 3 wt % EGDE was calculated to be less than 1 month. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 465–473, 2005  相似文献   

15.
A modified melamine resin that exhibits both thermoplastic and thermoset behaviors was used as a matrix for wood plastic composites (WPCs). The thermoplastic melamine (TPM) resin exhibits a glass transition at approximately 34°C and continues to be thermally malleable until a crosslinking reaction develops with additional heating and an acid catalyst. Varying blends of TPM and wood flour were evaluated for their rheology and curing behavior using torque rheometry. WPC composites were manufactured with extrusion methods and final product properties determined. The torque rheometry results showed a highly dependent relationship of the curing behavior to the amount of wood flour utilized and temperature. Based upon the torque rheometry results, two extrusion platforms were developed to initiate the curing process; (1) cure within the die land and (2) post‐cure of the extrudate. The post‐cure procedure provided composites with higher mechanical properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39858.  相似文献   

16.
In this study, we evaluated the physicochemical properties of the chitosan/nanocellulose composites. Wide‐angle X‐ray scattering was applied to define the supermolecular structure of the materials, the laser diffracting technique was used to characterize the particle sizes, and scanning electron microscopy was used to evaluate the morphologies of the samples. The tensile properties of the composite films were also determined. Cellulose pulp was mercerized with 16% sodium hydroxide to give only cellulose II. Cellulose I and cellulose II were subsequently hydrolyzed with 64% sulfuric acid. As a result, nanocellulose I (NCC I) from cellulose I and nanocellulose II (NCC II) from cellulose II were produced. The mercerization of cellulose pulp contributed to a significant particle size reduction; more than 50% of the particles of the NCC II sample and only 36% of the particles of the NCC I sample were smaller than 100 nm. Chitosan composite films containing 5, 10, and 20% w/w of nanocelluloses were prepared by a solvent casting method. This was the first study investigating the influence of the crystallographic forms of cellulose on the formation of nanocrystals. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42864.  相似文献   

17.
Shielding materials are becoming increasingly important, but present materials suffer from either insufficient mechanical stability or limited shielding properties. In this study, 3D flexible copper sulfide (CuxS)/polyacrylonitrile (PAN) nanofiber mats are developed via air spinning followed by chemical reaction with copper salt. The CuxS/PAN nanofiber mats exhibit an ultra‐lightweight density of 0.044 g cm?3 and a thickness of 0.423 mm. Stable electromagnetic interference (EMI) shielding effectiveness (SE) (29–31 dB) of the CuxS/PAN composite is achieved in the frequency range of 500–3000 MHz. EMI SE per unit surface density of 16 655.92 dB cm2 g?1 is several orders of magnitude higher than most copper sulfide containing EMI shielding materials reported in literature. In addition, the introduction of the CuxS improves the thermal stability and launderability of the PAN mats giving the mats thermal, mechanical, and aqueous stability. Finally, the shielding mechanism of the CuxS/PAN nanofiber mats for electromagnetic waves is proposed  相似文献   

18.
The various weight ratios of collagen/chitosan were used to immobilize the various grafted amounts of acrylic acid (AA) grafted polypropylene nonwoven fabric. For a given value of grafting percentage of AA and the immobilizing time period, the values of the immobilizing percentage of collagen/chitosan are increased with the increasing of chitosan contained in the mixtures of collagen/chitosan. The antibacterial properties are also increased with the increasing of chitosan in the mixtures of collagen/chitosan and the immobilizing percentage of collagen/chitosan. The crosslinking reaction between the AA‐grafted PP nonwoven fabrics and collagen/chitosan with glutaraldehyde are clearly sustained by examination from the spectra of the surface reflection infrared spectroscopy (IR). The values of water uptake and water diffusion coefficients are decreased with the increasing of chitosan in the mixtures of collagen/chitosan and the immobilizing percentages of collagen/chitosan at the same pH value of buffering water. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 391–400, 2005  相似文献   

19.
The use of ambient cured E‐glass/vinylester composites is increasingly being considered for infrastructure applications both along the shore and offshore, thereby exposing the composite to a marine aqueous environment. The use of ambient cure potentially results in incomplete polymerization and susceptibility for degradation early in life. This study characterizes the mechanical response of E‐glass/vinylester quadriaxial composites immersed in deionized water, sea water, and synthetic sea water. It is seen that there are substantial differences based on the solution type, with deionized water immersion causing the maximum drop in interlaminar shear performance and sea water causing the maximum reduction in tensile performance. The effect of cycling, simulating the tidal zone or the splash zone, is seen to be more pronounced in a resin‐dominated response. Drying of specimens, even over prolonged periods of time, is not seen to result in complete regain of performance degradation due to sorption processes. A clear competition is seen between the phenomena of moisture‐induced residual cure/postcure and physical (fiber‐matrix debonding, microcracking, plasticization) and chemical (hydrolysis) aging. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2760–2767, 2002  相似文献   

20.
Conductive polymer composites were synthesized by the polymerization of methylmethacrylate in the presence of ionic liquid solvents. These composites were characterized by attenuated total reflectance infrared spectroscopy, differential scanning calorimetry, and dynamic mechanical analysis. AC impedance measurements were performed on these composites as a function of ionic liquid type, ionic liquid concentration, crosslinker density, and molecular weight between crosslinks at various temperatures. 1‐Butyl‐3‐methylimidazolium thiocyanate produced composites with a greater conductivity than 1‐ethyl‐3‐methylimidazolium trifluoromethanesulfonimide, despite having a higher viscosity. The viscosity of the virgin ionic liquid could not be used to predict the order of ionic conductivity for composites made from these ionic liquids. The effect of crosslink density within the range of 0–0.6 mmol crosslinking agent per gram of monomer was studied. Composites with 25% ionic liquid (w/w) appeared to have an optimum crosslink density for maximum ionic conductivity. In the range of crosslink densities studied, composites with greater ionic liquid concentration exhibited no significant effect of crosslink density on ionic conductivity. This could be due to the fact that the difference in crosslink density did not effectively change the Tg of these composites. The composite with the lowest theoretical molecular weight between crosslinks had the lowest ionic conductivity. This could be due to restriction of ion movement at this molecular weight between crosslinks. The composite with the highest molecular weight between crosslinks had comparable ionic conductivity to an uncrosslinked composite. This study showed that these materials have ionic conductivities practical for advanced energy applications over a wide range of morphologies with dimensional stability. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号