首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the past few years, layered double hydroxides (LDHs) with monolayer structure have been much studied for the development of polymer nanocomposites. LDHs with intercalated stearate anions form a bilayer structure with increased interlayer spacing and are expected to be better nanofillers in polymers. In the work reported, thermoplastic polyurethane (PU)/stearate‐intercalated LDH nanocomposites were prepared by solution intercalation and characterized. X‐ray diffraction and transmission electron microscopy confirmed the exfoliation at lower filler loading followed by intercalation at higher filler loading in PU matrix. As regards mechanical properties, these nanocomposites showed maximum improvements in tensile strength (45%) and elongation at break (53%) at 1 and 3 wt% loadings. Maximum improvements in storage and loss moduli (20%) with a shift of glass transition temperature (15 °C) and an increase in thermal stability (32 °C) at 50% weight loss were observed at 8 wt% loading in PU. Differential scanning calorimetry showed a shift of melting temperature of the soft segment in the nanocomposites compared to neat PU, possibly due to the nucleating effect of stearate‐intercalated LDH on the crystal structure of PU. All these findings are promising for the development of mechanically improved, thermally stable novel PU nanocomposites. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
The Mg–Fe–Zr layered double hydroxide/Fe3O4 composite was synthesized by co-precipitation of layered double hydroxide (LDH) precursors in the presence of Fe3O4 particles and its arsenic adsorption behavior was investigated. The material characterization by XRD, TEM, surface area analysis, SEM-EDX, and VSM revealed that the composite was comprised of Fe3O4 particles covered by an LDH. The As(V) adsorption capacity of the composite (188 mg/g) was achieved at pH 3. The kinetics studies and adsorption isotherms suggested a two-stepped adsorption mechanism of the monolayer adsorption inside the interlayers of LDH.  相似文献   

3.
Phytic acid–modified layered double hydroxide (Ph‐LDH) was synthesized via coprecipitation method and subsequently was used in polypropylene (PP) by combining with an ammonium polyphosphate (APP) via melt compounding method. The synergistic effect between APP and Ph‐LDH on the thermal stability, flammability, and mechanical properties of the resultant PP composites was investigated by thermogravimetric analysis, limiting oxygen index, vertical burning test (UL‐94), cone calorimeter tests, tensile test, and impact test. Morphologies of the chars obtained from the samples after the cone calorimeter tests were studied by scanning electron microscopy. The combination of APP and Ph‐LDH slightly influenced the impact and tensile properties of PP. Also, the synergistic effect between APP and Ph‐LDH occurred in the cone calorimeter test. Moreover, the combination of APP and Ph‐LDH produced better quality char that effectively suppressed the spread of the flame and volatile and finally extinguished the fire.  相似文献   

4.
由于聚合物受热易燃烧,常存在火灾风险,通常需要引入阻燃剂来提升其阻燃性能。水滑石(LDHs)因其无卤、无毒且抑烟性能优异,在阻燃领域受到了越来越多的关注。基于此,对LDHs的结构、制备方法及其阻燃机理进行了介绍,特别是对提高LDHs阻燃性能的途径即从层板阳离子掺杂、层间阴离子插层和表面改性进行了重点综述,并对不同结构LDHs的阻燃机理及阻燃性能进行了总结,最后展望了LDHs作为阻燃剂今后的发展趋势。  相似文献   

5.
由于聚合物受热易燃烧,常存在火灾风险,因此通常需要引入阻燃剂来提升其阻燃性能。水滑石(LDHs)因其无卤、无毒且抑烟性能优异,在阻燃领域受到了越来越多的关注。基于此,本文对LDHs的结构、制备方法及其阻燃机理进行了总结,特别是对提高水滑石阻燃性能的途径即从层板阳离子掺杂、层间阴离子插层和表面改性等方面进行了重点综述,并对不同结构水滑石的阻燃机理及阻燃性能进行了归纳总结,最后展望了水滑石作为阻燃剂今后的发展趋势,以期为水滑石类阻燃剂的发展及相关研究者提供指导作用。  相似文献   

6.
近年来,层状双金属氢氧化物(LDH)凭借特殊的层状结构、极强的可调控性能、优异的环境兼容性及显著的应用效果等特点,在环保、催化、储能、传感等领域得到广泛关注。国内外多数研究集中于LDH可控合成工艺的改进完善及LDH的应用探索,但迄今对制备LDH时涉及其组成结构形貌的变化过程,即其形成机理的关注较少,相关机制解释模糊,深入研究其形成过程对于可控制备具有独特形貌和特定组成的LDH及开发更深层次的应用具有至关重要的作用。本文介绍了LDH层板形成机理的3个主要研究方向,即以二价金属氢氧化物的存在为基础、以三价金属氢氧化物的存在为基础和拓扑相变机制,并分别进行了阐述辨析及对比分析,发现LDH层板的形成是一个极其复杂的过程,多种机制往往共同作用,总结认为固液及液液反应在初期成核阶段占据主导地位,各自作用程度及不同层板构筑机制产生的主导作用易受到外界环境因素影响,而更为普遍的LDH形成机制解释需要归纳总结更多LDH层板构筑的区别和规律,宏观和微观上探索形成过程的内在机理及科学本质,以期为LDH开发拓展提供理论基础。  相似文献   

7.
Polyimide (PI)/modified layered double hydroxide (m‐LDH) nanocomposites were prepared in this study. For this work, m‐LDHs were prepared from layered double hydroxides (LDHs) through an anionic exchange reaction with pyromellitic dianhydride (PMDA), succinic acid or terephthalic acid. PMDA and 4,4′‐oxydianiline were used to make the poly(amic acid) precursor for PI. X‐ray diffraction and transmission electron microscopy measurements confirmed that the PMDA‐modified LDH (PMH) and terephthalic acid‐modified LDH (TMH) were well dispersed in the PI matrix. For the succinic acid‐modified LDH, some of the LDH was intercalated with the succinic acid molecules but most maintained its original structure. Thus, the PI/PMH and PI/TMH nanocomposites exhibited improved mechanical, thermal and electrical properties compared to pure PI. The PMH has aromatic groups and is expected to have better π–π interactions with the PI chains than the other m‐LDHs. Thus, the PI/PMH nanocomposites exhibited the best properties among the nanocomposites investigated. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
以钙基蒙脱石为原料,氟化钠为钠化剂,十六烷基三甲基溴化铵为有机改性剂采用离子交换法制备了有机蒙脱石(CTA-MMT);以硝酸镁、硝酸铝、氢氧化钠和十二烷基磺酸钠为原料,采用水热法制备了有机型镁铝层状双氢氧化物(Mg Al-SDS-LDH);以氯仿为剥离介质,采用超声法剥离CTA-MMT和MgAl-SDS-LDH,分别获得了两种剥离型矿物溶胶,将其混合自组装制备了蒙脱石/层状双氢氧化物(MMT/LDH)组装材料。用XRD和AFM表征了CTA-MMT和MgAl-SDS-LDH及其剥离产物,并分析了组装材料的热稳定性。结果表明,CTA-MMT和MgAl-SDS-LDH在氯仿介质中剥离仅需20 min,剥离型CTA-MMT和MgAl-SDS-LDH片层平均厚度分别约为9和8 nm。MMT/LDH由剥离型CTA-MMT和MgAl-SDS-LDH片层有序组装而成,组装材料结构与MgAl-SDS-LDH和CTA-MMT的含量有关,其结构单元层间距2.59 nm(CTA-MMT含量较低时)随着组装材料中CTA-MMT含量的升高而转变为1.82 nm。MMT/LDH组装材料具有较单一的CTA-MMT或MgAl-SDS-LDH更高的热稳定性。  相似文献   

9.
Herein, the formation mechanism of Ni-Al layered double hydroxide (NiAl-LDH) synthesized by coprecipitation was explored. Moreover, NiAl-LDH was prepared in a rotating packed bed (RPB) under different rotation speeds, which shows that increasing the rotation speed decreases the lateral size and thickness of NiAl-LDH, since high rotation speed accelerates the nucleation of NiAl-LDH. Additionally, the Ni/mixed metal oxides (MMO) catalysts derived from NiAl-LDH were prepared for maleic anhydride (MA) hydrogenation. Result shows that Ni/MMO catalyst obtained from NiAl-LDH prepared under a higher rotation speed exhibits higher MA conversion due to its larger surface area and smaller nickel particle size. The Ni/MMO catalyst obtained from NiAl-LDH prepared under 500 rpm exhibits 100% MA conversion and 100% succinic anhydride selectivity under 30°C and 2 MPa within 1 h. This work provides fundamental insight to understand the formation of NiAl-LDH. Moreover, RPB as an effective technique to synthesize NiAl-LDH and Ni-based catalysts was validated.  相似文献   

10.
Spherical architectures of nickel–aluminum layered double hydroxide (NiAl‐LDH) with hydrotalcite‐like nanoflakes as building blocks were facilely fabricated by precipitation reaction in aqueous solution without any surfactants and organic solvents. Growth of such unique structure undergoes preorganization of primary nanospheres of colloidal amorphous aluminum hydroxide (AAH) in solution, followed by nucleation and crystallizaion of LDH from exterior to interior of AAH spheres by an in situ transformation mechanism. The structure and morphology of LDH spheres depend on both starting raw materials and synthetic parameters including reaction time, reaction temperature, and aqueous ammonia dosage. NiAl‐LDH sphere as positive electrode material delivers improved rechargeable and discharge capacity, with the highest discharge capacity of 173 mAh g?1 at a current density of 30 mA g?1 within a potential range from ?0.1 to 0.45 V in 10 mol L?1 KOH solution, due to the faster diffusion processes in the spherical architecture than the powder sample. © 2014 American Institute of Chemical Engineers AIChE J 60: 4027–4036, 2014  相似文献   

11.
李聪  杨金辉 《精细化工》2021,38(2):226-233
层状双氢氧化物(LDH)凭借其特殊的层状结构、极强的可调控性等,已在水处理领域得到广泛关注.LDH除用于重金属吸附外,处理染料废水也表现出独特的优势.但由于单一的LDH存在耐酸碱性差、表面官能团少、化学稳定性差等缺陷,严重制约了其在处理染料废水方面的应用,为此,越来越多的研究者通过对LDH进行改性提高材料的吸附性能.首先归纳总结了LDH材料的常用制备及改性方法并比较了各方法的优缺点;其次,介绍了改性LDH材料对染料废水中离子的去除效果及其吸附机理,同时分析了不同环境条件(pH、接触时间、吸附剂用量等)对LDH基吸附材料吸附性能的影响;最后,对改性LDH材料的应用现状作出总结并对其未来发展方向作出展望.  相似文献   

12.
The present work deals with the effect of stearate intercalated layered double hydroxide (St‐LDH) loadings on the morphological, mechanical, thermal, adhesive and flame retardant properties of polyurethane (PU)/St‐LDH nanocomposites prepared by the in situ polymerization method. X‐ray diffraction and transmission electron microscopy studies confirmed that exfoliation takes place at 3 wt% loading followed by intercalation at higher filler loadings in the PU matrix. The exfoliated structure has been further verified by atomic force microscopy. The measurements of stress‐strain, thermogravimetric analysis, dynamic mechanical analysis, lap shear strength and peel strength analysis showed that the nanocomposites containing 3 wt% St‐LDH exhibit excellent improvement in tensile strength (ca 175%) and log storage modulus (ca 14%), while PU/St‐LDH (5 wt%) possesses optimum improvement in glass transition temperature (ca 6 °C), lap shear strength (200%) and peel strength (130%) over neat PU. In addition, the gradual improvements in limiting oxygen index value with St‐LDH loading indicated the higher effectiveness in providing better barrier properties as well as better flame retardant behavior. Copyright © 2012 Society of Chemical Industry  相似文献   

13.
Francis Reny Costa 《Polymer》2005,46(12):4447-4453
Low density polyethylene (LDPE)/Mg-Al layered double hydroxide (LDH) nanocomposites have been synthesized with different compositions by melt-mixing technique using maleic anhydride grafted polyethylene as compatibilizer. LDH has been modified by sodium dodecylbenzene sulfonate using reconstruction method and characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The nanocomposites are characterized by different techniques such as, transmission electron microscopy (TEM), XRD and rheology. The TEM analysis shows a complex nature of particle dispersion in the polymer matrix with wide distribution of particles sizes and shapes. The rheological analysis showed significant changes in linear viscoelastic responses of the composites, even at very low concentration (2 phr) of LDH materials, in comparison to the pure polymer in low frequency regime in dynamic frequency sweep experiments. These changes are related to the LDHs-polymer chains interactions resulting in network-like structure.  相似文献   

14.
将水滑石(LDHs)加入到轮胎胎侧橡胶中制得LDHs/橡胶复合材料,研究了LDHs在橡胶复合材料中的分散状态及对胎侧橡胶复合材料的硫化特性、力学性能和耐老化性能的影响。结果表明,LDHs穿插在炭黑粒子之间,形成均匀分散;LDHs可以促进硫化,缩短橡胶复合材料的硫化时间,并提高其定伸应力和撕裂强度、改善耐老化性能。当LDHs的用量为4份(质量)时,与未添加LDHs橡胶复合材料相比的抗张积老化系数提高了25.7%。  相似文献   

15.
通过太阳能光解水制取能源(如氢气)是开发清洁能源的重要途径之一,而水分解的半反应--水氧化过程是整体水分解的重要环节与限速步。发展高效、稳定、易获取的水氧化催化剂是实现有效水分解的关键。层状双金属氢氧化物(layered double hydroxides, LDHs)由于其独特的二维层状结构与灵活调变的化学组成,近年来作为水氧化反应催化剂受到研究者越来越多的关注。除用于电化学水氧化的催化剂外,LDHs在光(电)催化水氧化方面也表现出独特的优势。研究者正致力于LDHs基高效水氧化催化剂的研究,取得了很好的进展。主要综述了LDHs及其复合结构在催化水氧化方面的最新研究进展,以期为水氧化催化剂的结构设计与性能增强提供新的思路。  相似文献   

16.
In this study, 5‐sulfosalicylic acid (SA) anions have been intercalated into Mg3Al‐NO3 layered double hydroxide (LDH) to synthesize SA‐intercalated Mg3Al‐NO3‐LDH (LDH‐SA) by ion‐exchange reaction. Then, the effects of LDH, SA, and LDH‐SA on the photostability of wood flour/polypropylene (WF/PP) composites during accelerated ultraviolet (UV) weathering were investigated. The surface color, surface gloss, and mechanical properties of the composites during weathering were tested, accompanied by characterizations using SEM, ATR‐FTIR, and TG. The results showed that (1) SA anions completely replaced the anions in LDH and the thermal stability of LDH‐SA was considerably enhanced; (2) composites with LDH or LDH‐SA exhibited less color change, fewer surface cracks, better thermal stability, and less losses of mechanical properties than the control group; (3) LDH‐SA showed a long‐term efficiency and alleviated the photo‐oxidation of WF/PP composites successfully; (4) LDH‐SA blocked UV light by physical shield effect of the layer sheets, as well as the chemical absorbability of the interlayer anions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44597.  相似文献   

17.
Layered double hydroxide (LDH) is a new type of nanofiller, which improves the physicochemical properties of the polymer matrix. In this study, 1, 3, 5, and 8 wt % of dodecyl sulfate‐intercalated LDH (DS‐LDH) has been used as nanofiller to prepare a series of thermoplastic polyurethane (PU) nanocomposites by solution intercalation method. PU/DS‐LDH composites so formed have been characterized by X‐ray diffraction and transmission electron microscopy analysis which show that the DS‐LDH layers are exfoliated at lower filler (1 and 3 wt %) loading followed by intercalation at higher filler (8 wt %) loading. Mechanical properties of the nanocomposite with 3 wt % of DS‐LDH content shows 67% improvement in tensile strength compared to pristine PU, which has been correlated in terms of fracture behavior of the nanocomposites using scanning electron microscope analysis. Thermogravimetric analysis shows that the thermal stability of the nanocomposite with 3 wt % DS‐LDH content is ≈ 29°C higher than neat PU. Limiting oxygen index of the nanocomposites is also improved from 19 to 23% in neat PU and PU/8 wt% DS‐LDH nanocomposites, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
In order to investigate whether the particle sizes of inorganic additives in polymer have an influence on the flame‐retardant and other properties of the polymer, five types of Mg3Al–CO3 layered double hydroxide (LDHs) with particle diameters of 80–100, 200–350, 500–550, 550–600, and 700–900 nm were synthesized using a hydrothermal method. The obtained Mg3Al–CO3 LDHs were treated using the aqueous miscible organic solvent treatment method to give highly dispersed platelets in Polypropylene (PP). The thermal stability, flame retardancy, and mechanical properties of the PP/AMO–LDH nanocomposites were investigated systematically. The results showed that the thermal stability and flame retardancy of PP could be improved after incorporating AMO–LDHs. The temperature at 50% weight loss (T0.5) of PP/LDH (700–900 nm) nanocomposites with a LDH loading of 15 wt % was increased by 57 °C. When the LDHs loading was 40 wt %, the peak heat release rate (PHRR) of the PP/LDH nanocomposites with small LDHs particle sizes (<350 nm) was decreased by ca. 58%. The limiting oxygen index was increased by 5% for PP/LDH (80–100 nm) nanocomposites. The response surface regression results also indicated that both LDH particle size and loading have influence on PHRR, heat release capacity, tensile strength, and elongation at break. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46204.  相似文献   

19.
The transesterification of soybean oil to fatty acid methyl esters was studied using a calcined Li–Al layered double hydroxide catalyst. The catalyst exhibited high activity, with near quantitative oil conversion being obtained under mild conditions (reflux temperature of methanol) and short reaction times (≤ 4 h). The influence of relevant parameters (catalyst calcination temperature, methanol to oil mole ratio, catalyst charge and reaction duration) was examined.  相似文献   

20.
Mg-Al layered double hydroxide intercalated with CO_3~(2-)(CO_3·Mg-Al LDH) is effective for treating HCl exhaust gas.HCl reacts with CO_3~(2-) in CO_3·Mg-Al LDH, resulting in the formation of Cl·Mg-Al LDH.We propose that CO_2 can be used for the desorption of Cl~-from Cl·Mg-Al LDH to regenerate CO_3·Mg-Al LDH.Herein,we studied the desorption of a from CI-Mg-Al LDH by adding water to Cl·Mg-Al LDH and blowing CO_2 into it.We also analyzed the effects of temperature and water addition speed on the desorption of CI~-from Cl·Mg-Al LDH.Our results show that the added water adhered to CI·Mg-Al LDH and that CO_2 in the gaseous phase was dissolved in this adhered water,thus generating CO_3~(2-).Therefore,anion exchange occurred between CO_3~(2-) and Cl~-in the Cl·Mg-Al LDH,thus desorbing Cl~-.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号