首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The two tests of most importance in evaluating structural adhesives for metals are (1) lap shear strength and (2) peel strength. Epoxies perform well in the first due to high tensile and shear strength. They are poor in the second unless modified to reduce brittleness. We have developed a urethane modified epoxy for this purpose. By taking climbing drum peel data in which both the temperature and the peel rate are varied, the time-temperature superposition principle can be tested. This principle is most generally applicable to thermoplastic materials between Tθ and Tθ + 100 °C (Tθ = glass transition temperature), and serves as a measure of viscoelastic response in the polymer. First, good agreement was found for a thermoplastic adhesive (PE-AA film). This was done to verify that climbing drum peel data can be used in this manner. Next, data were taken for our urethane modified epoxy. Results showed adherence to the superposition principle only above the heat distortion temperature of the cured polymer. These results indicate, among other things, that our point of failure upon peeling is within the body of the adhesive rather than within a urethane-rich layer at the metal-adhesive interface.  相似文献   

2.
Epoxy–imide resins were obtained by curing Araldite GY 250 (diglycidyl ether of bisphenol‐A and epichlorohydrin; difunctional) and Araldite EPN 1138 (Novolac–epoxy resin; polyfunctional) with N‐(4‐ and 3‐carboxyphenyl)trimellitimides derived from 4‐ and 3‐aminobenzoic acids and trimellitic anhydride. The adhesive lap shear strength of epoxy–imide systems at room temperature and at 100, 125, and 150°C was determined on stainless‐steel substrates. Araldite GY 250‐based systems give a room‐temperature adhesive lap shear strength of about 23 MPa and 49–56% of the room‐temperature adhesive strength is retained at 150°C. Araldite EPN 1138‐based systems give a room‐temperature adhesive lap shear strength of 16–19 MPa and 100% retention of room‐temperature adhesive strength is observed at 150°C. Glass transition temperatures of the Araldite GY 250‐based systems are in the range of 132–139°C and those of the Araldite EPN 1138‐based systems are in the range of 158–170°C. All these systems are thermally stable up to 360°C. The char residues of Araldite GY 250‐ and Araldite EPN 1138‐based systems are in the range of 22–26% and 41–42% at 900°C, respectively. Araldite EPN 1138‐based systems show a higher retention of adhesive strength at 150°C and have higher thermal stability and Tg when compared to Araldite GY 250‐based systems. This has been attributed to the high crosslinking possible with Araldite EPN 1138‐based systems arising due to the polyfunctional nature of Araldite EPN 1138. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1729–1736, 2000  相似文献   

3.
Epoxy‐terminated siloxane‐contained resin (BCDS/OBBA‐ETS) with high tensile strength and lap shear strength as well as good thermal stability was synthesized and characterized by 1H‐NMR and Fourier transform infrared spectroscopy. Carboxy‐capped disiloxane‐4,4′‐oxybis (benzoic acid) ester oligomer (BCDS/OBBA) was firstly prepared from the reaction between 1,3‐bis(chloromethyl)‐1,1,3,3‐tetramethyl‐disiloxane and 4,4′‐oxybis(benzoic acid) (OBBA) in N,N‐dimethylformamide in the presence of triethylamine. Then, the BCDS/OBBA oligomer was reacted with epichlorohydrin to obtain the title BCDS/OBBA‐ETS resin. Cured with liquid polyamide L‐651, or diethylenetriamine, the mechanical and thermal properties as well as the lap shear strength of the BCDS/OBBA‐ETS resin were evaluated. The results indicated that the BCDS/OBBA‐ETS resin exhibited good thermal stability below 200°C, and the glass transition temperature (Tg) was about 64°C after cured with L‐651. The tensile strength of same cured BCDS/OBBA‐ETS resin was 27.46 MPa with a stain at break of 42.11%, and the lap shear strength for bonding stainless steel was 18.59 MPa. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
In this paper, the novel film adhesives based on phenolphthalein poly(ether sulfone) (PES-C) and epoxy (EP) modified cyanate ester resin (CE) were prepared for bonding an advanced radome. The film adhesives are convenient for applying to manufacture, possessing good adhesion strength, thermal durability and excellent dielectric property. The curing behaviors were confirmed by differential scanning calorimetry (DSC), showing that the main reaction pathways are not varied with adding PES-C but the reaction rates are evidently accelerated, and the film adhesives can be well cured at lower temperature of 177 °C. The adhesion strength was evaluated in lap shear strength and peel strength, indicating that the better adhesion strength is obtained with increasing in PES-C. The maximum value of lap shear strength is 33 MPa at room temperature. The thermal durability was determined by thermal aging tests of lap shear specimens, showing that the decrease in strength gets faster with adding PES-C, and the usability of film adhesives over 2000 h at 200 °C. The dielectric properties were measured by dielectric resonator methods, finding that the introduction of PES-C brings a positive effect on dielectric properties. The lowest value of determined dielectric loss is 0.0075 at 10 GHz.  相似文献   

5.
A number of two-part acrylic adhesives were examined for the effect of immersion time in water at 23°C, 80°C and 100°C on the tensile lap shear strength. The mechanism of acrylic bonded joint failure in water was discussed based on the observed results. The relative water resistance between these adhesives was compared from shear strength retention values. The dependence of the water resistance of these adhesives at 23°C and at elevated temperatures was discussed. It has been found that for acrylic adhesives, the water resistance at room temperature can be evaluated on the basis of the shear strength retention values after aging in water at 80°C.  相似文献   

6.
Electrically conductive adhesives (ECAs) have been explored as a tin/lead (Sn/Pb) solder alternative for attaching encapsulated surface mount components on rigid and flexible printed circuits. However, limited practical use of conductive adhesives in surface mount applications is found because of the limitations and concerns of current commercial ECAs. One critical limitation is the significant increase of joint resistance with Sn/Pb finished components under 85°C/85% relative humidity (RH) aging. Conductive adhesives with stable joint resistance are especially desirable. In this study, a novel conductive adhesive system that is based on epoxy resins has been developed. Conductive adhesives from this system show very stable joint resistance with Sn/Pb‐finished components during 85°C/85% RH aging. One ECA selected from this system has been tested here and compared with two popular commercial surface mount conductive adhesives. ECA properties studied included cure profile, glass transition temperature (Tg), bulk resistivity, moisture absorption, die shear adhesion strength, and shift of joint resistance with Sn/Pb metallization under 85°C/85% RH aging. It was found that, compared to the commercial conductive adhesives, our in‐house conductive adhesive had higher Tg, comparable bulk resistivity, lower moisture absorption, comparable adhesion strength, and most importantly, much more stable joint resistance. Therefore, this conductive adhesive system should have better performance for surface mount applications than current commercial surface mount conductive adhesives. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 399–406, 1999  相似文献   

7.
The adhesive properties have been investigated in blends of mono‐carboxyl‐terminated poly(2‐ethylhexyl acrylate‐co‐methyl methacrylate) with diglycidyl ether of bisphenol A and three different aliphatic amine epoxy hardener. The adhesives properties are evaluated in steel alloy substrate using single‐lap shear test. The copolymers are initially miscible in the stoichiometric blends of epoxy resin and hardener at room temperature. Phase separation is noted in the course of the polymerization reaction. Different morphologies are obtained according to the amine epoxy hardener. The most effective adhesive for steel–steel joints in single‐lap shear test is the blends using 1‐(2‐aminoethyl)piperazine (AEP) as hardener. This system shows the biggest lap shear strength. However, the modified adhesives show a reduction in the mechanical resistance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
An experimental and numerical investigation into the shear strength behaviour of adhesive single lap joints (SLJs) was carried out in order to understand the effect of temperature on the joint strength. The adherend material used for the experimental tests was an aluminium alloy in the form of thin sheets, and the adhesive used was a high-strength high temperature epoxy. Tensile tests as a function of temperature were performed and numerical predictions based on the use of a bilinear cohesive damage model were obtained. It is shown that at temperatures below Tg, the lap shear strength of SLJs increased, while at temperatures above Tg, a drastic drop in the lap shear strength was observed. Comparison between the experimental and numerical maximum loads representing the strength of the joints shows a reasonably good agreement.  相似文献   

9.
赵明亮  KIM Yun-mi 《粘接》2014,(2):57-60
对比了酚醛胺NX-2003D及聚酰胺Versamid140与环氧树脂Epon828胶粘剂的力学强度,及在室温、低温、潮湿面的粘接强度。通过设计的建筑胶配方,研究了其室温及低温的粘接强度增长速度,及耐湿热老化性能。结果表明,在常温固化时,NX-2003D体系具有与Versamid140体系相近的良好力学强度及粘接性能;但在低温条件下,NX-2003D体系表现出优于聚酰胺140体系的固化性能,在0℃固化7 d及14 d后,NX-2003D体系的拉伸剪切强度分别达到5 MPa及11 MPa以上,可以满足使用要求。NX-2003D体系的耐湿热老化性能及对潮湿面的粘接强度,也明显优于聚酰胺140体系。  相似文献   

10.
The effects of corrosive environments on adhesive bonds to electro-galvanized, zinc/aluminum alloy coated, coated electro-galvanized, and cold-rolled steels have been investigated. Bonds prepared using a rubber-modified dicyandiamide-cured epoxy adhesive, an epoxy-modified poly(vinyl chloride)-based adhesive, an acrylic-modified poly(vinyl chloride)-based adhesive a one-part urethane adhesive, and a two-component epoxy-modified acrylic adhesive were exposed under no-load conditions to constant high humidity or cyclic corrosion exposure for 50 days or 50 cycles (10 weeks) respectively.

Over the course of this study, exposure to constant high humidity had little effect on lap shear strength for any of the systems studied. Bond failures were initially cohesive, and with few exceptions remained so.

Bond strength retention under the cyclic corrosion exposure conditions employed was strongly dependent on adhesive composition and on substrate type. On galvanized substrates, lap shear strengths for the poly(vinyl chloride)-based adhesives were reduced by 90–100% during the course of the corrosion exposure, and a change in the mode of bond failure (from cohesive to interfacial) was observed. On the coated electro-galvanized steel substrate, the poly(vinyl chloride)-based adhesives showed about 50% retention in lap shear strength and a cohesive failure throughout most of the corrosion test. The dicyandiamide-cured epoxy adhesive used in this study generally showed the best lap shear strength retention to zinc-coated substrates; bonds to cold-rolled steel were severely degraded by corrosion exposure. The performance of the acrylic and urethane adhesives were intermediate to the dicyandiamide-cured epoxy and poly(vinyl chloride)-based adhesives in strength retention.  相似文献   

11.
Nanoreinforcing fillers have shown outstanding mechanical properties and widely used as reinforcing materials associated to polymeric matrices for high performance applications. In this study, a series of multiwalled carbon nanotubes (MWCNTs)‐, nano‐Al2O3‐, nano‐SiO2‐, and talc‐reinforced epoxy resin adhesives composites were developed. The influence of different types and contents of nanofillers on adhesion, elongation at break, and thermal stability (under air and nitrogen atmospheres) of diglycidyl ether of bisphenol A (DGEBA)/epoxy novolac adhesives was investigated. A simple and effective approach to prepare adhesives with uniform and suitable dispersion of nanofillers into epoxy matrix was found to be mechanical stirring combined with ultrasonication. Transmission electron microscopic and scanning electron microscopic investigations revealed that nanofillers were homogeneously dispersed in epoxy matrix at optimized nanofiller loadings. Adhesion strength was measured by lap shear strength test as a function of nano‐Al2O3 and MWCNTs loadings. The results indicated that the lap shear strength was significantly increased by about 50% and 70% with addition of MWCNTs and nano‐Al2O3 up to a certain level, respectively. The highest lap shear strength was reached at 1.5 wt % of nano‐Al2O3 loading. MWCNTs at all loadings (except 3 wt %) and nano‐Al2O3 have enhanced onset of degradation temperature and char yield of the adhesives. By combined incorporation of 0.75 wt % nano‐Al2O3 and 0.75 wt % MWCNTs into the epoxy novolac/DGEBA blend adhesives a synergistic effect was observed in the thermal stability of the adhesives at high temperatures (800°C). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40017.  相似文献   

12.
Herein, a strategy of embedding in-situ polymethyl-methacrylate (PMMA) domains in polydimethylsiloxane (PDMS) networks is proposed to enhance adhesive and damping properties of addition type silicone rubber (SR). PMMA domains improve the modulus of SR (at room temperature), which is stronger correlated to its adhesive performance, according to the Griffith criterion. Besides, the damping performance at high temperature is provided by the glass transition of thermoplastic PMMA. The PMMA/SR blends are obtained by the crosslink of PMMA and vinyl-terminated polydimethylsiloxane (vi-PDMS) liquid blends with polymethylhydrosiloxane, and the PMMA/vi-PDMS liquid blends are prepared by in-situ radical polymerization of methyl-methacrylate (MMA) in vi-PDMS with toluene as compatibilizer. Effects of disperse speed, compatibilizer content, and PMMA proportion on the morphologies and properties of PMMA/SR blends are studied. Small PMMA domains (around 800 nm) in PMMA/vi-PDMS blends with narrow size distribution and well dispersion are formed at appropriate disperse speed (100–300 rpm) and abundant compatibilizer content (~100 wt% refers to vi-PDMS). The blends with 20 wt% PMMA possess tensile strength over 8 MPa and lap shear strength over 5 MPa to stainless steel. And the blends with 50 wt% PMMA show good damping properties with tan δ over 0.15 at temperature range from −50 to 150°C. Tg-PMMA moves slightly to lower temperature with less PMMA embedded, but Tg-PDMS remained stable relatively.  相似文献   

13.
Two copolyimides, LARC-STPI and STPI-LARC-2, with flexible backbones were prepared and characterized as adhesives. The processability and adhesive properties were compared to those of a commercially available form of LARC-TPI.

Lap shear specimens were fabricated using adhesive tape prepared from each of the three polymers. Lap shear tests were performed at room temperature, 177°C, and 204°C before and after exposure to water-boil and to thermal aging at 204°C for up to 1000 hours.

The three adhesive systems possess exceptional lap shear strengths at room temperature and elevated temperatures both before and after thermal exposure. LARC-STPI, because of its high glass transition temperature provided high lap shear strengths up to 260°C. After water-boil, LARC-TPI exhibited the highest lap shear strengths at room temperature and 177°C, whereas the LARC-STPI retained a higher percentage of its original strength when tested at 204°C [68% versus 50% (STPI-LARC-2) and 40% (LARC-TPI)].

These flexible thermoplastic copolyimides show considerable potential as adhesives based on this study and because of the ease of preparation with low cost, commercially available materials.  相似文献   

14.
有机硅胶粘剂的耐热性能研究   总被引:1,自引:0,他引:1  
以自制的有机硅树脂为基体,通过添加耐热填料制得一种耐高温胶粘剂。探讨了无机耐热填料的受热温度、受热时间对胶粘剂剪切强度的影响。试验结果表明:当m(TiO2)∶m(ZnO)=1.0∶1.0时,胶粘剂在300℃时受热1 h,能够获得高达6.61 MPa的拉伸剪切强度;当受热时间延长至4 h时,胶粘剂仍可保持5.20 MPa的剪切强度;350℃受热1~4 h,胶粘剂获得了5.53~4.01 MPa的剪切强度;在400℃分别受热1 h和4 h,胶粘剂的剪切强度降至3.65 MPa和2.54 MPa。随着受热温度的升高、受热时间的延长,胶粘剂的剪切强度呈下降趋势。  相似文献   

15.
Thermoplastic nylon powder was added to naphthalene epoxy to serve as a stress release agent to reduce the stress resulting from the shrinkage during the cure of naphthalene epoxy. The purpose of this study was to explore the physical impact and effect on the forming object after adding nylon powder onto naphthalene epoxy. Mechanical properties were explored through the Izod impact test, the three‐point bending test, tensile test, and lap shear adhesion test. Thermal mechanical analysis (TMA) and dynamic mechanical analysis (DMA) were conducted to identify the coefficient of thermal expansion (CTE) and the glass transition temperature (Tg). The rate of water absorption was measured via a test of pressure cook test (PCT), and insulation resistance was assessed through the breakdown voltage experiment. The results indicate that the addition of nylon powder increases the fracture energy of the cured epoxy; however, mechanical properties (lap shear strength, flexural strength, tensile strength) decreased slightly. The TMA and DMA results showed that the CTE (α1) decreased when nylon was added and the heat resistance decreased a little. The water absorption rate test and PCT showed that the rate of water absorption increased to a small extent, whereas the breakdown voltage decreased slightly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3504–3509, 2006  相似文献   

16.
Abstract

Polyamide hot-melt adhesive was synthesized from lower purity, i.e., 75% purity dimer acid, sebacic acid, ethylenediamine and piperazine. The effect of piperazine content on the properties of polyamides, such as thermal properties: heat of fusion (H f), heat of crystallization (H c), softening point (T s) and glass transition temperature (T g); mechanical properties: tensile strength and hardness; adhesion properties: lap shear strength (LSS) and T-peel strength (TPS); and rheological properties was investigated. Concentration of piperazine was varied from 12.5 to 37.5 molar %. It was found that H f, H c, T s, T g, tensile strength, hardness, LSS, TPS and viscosity all increased with decrease in molar percentage of piperazine. This is due to increase in crystallinity of the polyamide with decrease in piperazine, giving better packing of molecules in the adhesive, thus giving better properties.  相似文献   

17.
Rubber solutions were prepared and used for bonding wood pieces. The effect of the variation of chlorinated natural rubber (CNR) and phenolformaldehyde (PF) resin in the adhesive solutions on lap shear strength was determined. Natural rubber and neoprene-based adhesive solutions were compared for their lap shear strength. The storage stability of the adhesive prepared was determined. The change in lap shear strength before and after being placed in cold water, hot water, acid, and alkali was tested. The bonding character of these adhesives was compared with different commercially available solution adhesives. The room-temperature aging resistance of wood joints was also determined. In all the studies, the adhesive prepared in the laboratory was found to be superior compared to the commercial adhesives. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1185–1189, 1998  相似文献   

18.
The peel strength and tensile shear strength of polyester hot-melt adhesives on metals coated with epoxy resins are affected by four characteristics of the polyester: (1) inherent viscosity, (2) glass transition temperature (Tg), (3) degree of crystallinity, and (4) melting point. The inherent viscosity affects the strength, toughness, and crystallinity of the adhesive. The Tg and degree of crystallinity affect the low-temperature adhesive properties; the peel strength is relatively low when the Tg is appreciably above the use temperature. The Tg, degree of crystallinity, and melting point affect the high-temperature adhesive properties. A hot-melt adhesive with high peel and tensile shear strengths from 0° to 120°C is the polyester of 1,4-butanediol and trans-1,4-cyclohexanedicarboxylic acid.  相似文献   

19.
An atmospheric-pressure plasma jet (APPJ)-based surface treatment process was investigated for the structural (τB > 15 MPa) adhesive bonding of polyamide 6 (PA6) composites. The treated surfaces were examined by contact angle measurement, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM). Additionally, the shear strengths of single lap specimens were determined as a function of different plasma intensities and polyurethane adhesives. Our results show that APPJ leads to an increase of the surface free energy, oxygen concentration, and number of functional groups. Furthermore, the topography of the surface was significantly modified by exposure to APPJ. AFM measurements show that special attention has to be paid to the intensity of the plasma treatment to avoid melting and flattening of the PA6 surface on the nanometer scale. With optimized multiple APPJ treatments, lap shear strength of 20 MPa was achieved for the first time for this material system, allowing the material system to be employed in future automobile applications.  相似文献   

20.
The combined effects of heat (50[ddot]C) and humidity (95% R.H.) on the lap shear and T-peel strengths of 120[ddot]C, 150[ddot]C and 215[ddot]C service epoxy film adhesives have been characterized. Experimental results have indicated that effects of hygrothermal conditioning on lap shear and peel properties vary with exposure time and final testing temperatures and type of adhesive tested. In the cases where cohesive failure was observed in the shear and peel specimens, a correlation could be established between the bulk properties of the adhesives (tensile strength and elongation) and their adhesively bonded joint properties (shear and peel). When testing was carried out at room temperature, a general correlation between the tensile elongation and T-peel or shear could be obtained. At below freezing temperatures, lap shear strength seemed to be correlated with bulk tensile strength while peel correlated with bulk tensile elongation. At elevated temperatures, the relative contributions of bulk strength and elongation were the decisive factors as far as shear and peel strengths are concerned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号