首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Control charts are widely applied in many manufacturing processes to monitor the quality characteristic of interest. Recently, a homogeneously weighted moving average (HWMA) control chart was proposed as an improvement of the exponentially weighted moving average (EWMA) chart for efficiently monitoring of small shifts in the process mean. In the present article, we extend the HWMA chart by imitating exactly the double EWMA (DEWMA) technique. The proposed scheme is regarded as double HWMA (DHWMA) control chart. The run-length characteristics of the proposed chart are evaluated by performing Monte Carlo simulations. A comparison study versus the EWMA, DEWMA, HWMA, mixed EWMA cumulative sum (CUSUM), CUSUM, and GWMA charts indicates that the DHWMA chart is more effective in detecting small to moderate shifts, while it performs similarly with its competitors for large shifts. We also study the robustness of the proposed chart under several nonnormal distributions, and it is shown that the DHWMA chart is in-control robust for small values of the smoothing parameters. Finally, two examples are given to demonstrate the implementation of the proposed chart.  相似文献   

2.
A generalization of the exponentially weighted moving average (EWMA) control chart is proposed and analyzed. The generalized control chart we have proposed is called the generally weighted moving average (GWMA) control chart. The GWMA control chart, with time-varying control limits to detect start-up shifts more sensitively, performs better in detecting small shifts of the process mean. We use simulation to evaluate the average run length (ARL) properties of the EWMA control chart and GWMA control chart. An extensive comparison reveals that the GWMA control chart is more sensitive than the EWMA control chart for detecting small shifts in the mean of a process. To enhance the detection ability of the GWMA control chart, we submit the composite Shewhart-GWMA scheme to monitor process mean. The composite Shewhart-GWMA control chart with/without runs rules is more sensitive than the GWMA control chart in detecting small shifts of the process mean. The resulting ARLs obtained by the GWMA control chart when the assumption of normality is violated are discussed.  相似文献   

3.
In the service and manufacturing industry, memory-type control charts are extensively applied for monitoring the production process. These types of charts have the ability to efficiently detect disturbances, especially of smaller amount, in the process mean and/or dispersion. Recently, a new homogeneously weighted moving average (HWMA) chart has been proposed for efficient monitoring of smaller shifts. In this study, we have proposed a new double HWMA (DHWMA) chart to monitor the changes in the process mean. The run length profile of the proposed DHWMA chart is evaluated and compared with some existing control charts. The outcomes reveal that the DHWMA chart shows better performance over its competitor charts. The effect of non-normality (in terms of robustness) and the estimation of the unknown parameters on the performance of the DHWMA chart are also investigated as a part of this study. Finally, a real-life industrial application is offered to demonstrate the proposal for practical considerations.  相似文献   

4.
The cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been widely accepted because of their fantastic speed in identifying small‐to‐moderate unusual variations in the process parameter(s). Recently, a new CUSUM chart has been proposed that uses the EWMA statistic, called the CS‐EWMA chart, for monitoring the process variability. On similar lines, in order to further improve the detection ability of the CS‐EWMA chart, we propose a CUSUM chart using the generally weighted moving average (GWMA) statistic, named the GWMA‐CUSUM chart, for monitoring the process dispersion. Monte Carlo simulations are used to compute the run length profiles of the GWMA‐CUSUM chart. On the basis of the run length comparisons, it turns out that the GWMA‐CUSUM chart outperforms the CUSUM and CS‐EWMA charts when identifying small variations in the process variability. A simulated dataset is also used to explain the working and implementation of the CS‐EWMA and GWMA‐CUSUM charts.  相似文献   

5.
Several modifications and enhancements to control charts in increasing the performance of small and moderate process shifts have been introduced in the quality control charting techniques. In this paper, a new hybrid control chart for monitoring process location is proposed by combining two homogeneously weighted moving average (HWMA) control charts. The hybrid homogeneously weighted moving average (HHWMA) statistic is derived using two smoothing constants λ1 and λ2 . The average run length (ARL) and the standard deviation of the run length (SDRL) values of the HHWMA control chart are obtained and compared with some existing control charts for monitoring small and moderate shifts in the process location. The results of study show that the HHWMA control chart outperforms the existing control charts in many situations. The application of the HHWMA chart is demonstrated using a simulated data.  相似文献   

6.
In practical situations, the underlying process distribution sometimes deviates from normality and their distribution is partially or completely unknown. In that instance, rather than staying with/depending on the conventional parametric control charts, we consider non-parametric control charts due to their exceptional performance. In this paper, a new non-parametric double homogeneously weighted moving average sign control chart is proposed with the least assumptions. This chart is based on a sign test statistic for catching the smaller deviations in the process location. Run-length (RL) properties of the proposed chart are studied with the help of Monte Carlo simulations. Both in-control and out-of-control RL properties show that the proposed chart is a better contender as compared to some existing charts from the literature. A real-life application for practical consideration of the proposed chart is also provided.  相似文献   

7.
Most control charts have been developed based on the actual distribution of the quality characteristic of interest. However, in many applications, there is a lack of knowledge about the process distribution. Therefore, in recent years, nonparametric (or distribution-free) control charts have been introduced for monitoring the process location or scale parameter. In this article, a nonparametric double generally weighted moving average control chart based on the signed-rank statistic (referred as DGWMA-SR chart) is proposed for monitoring the location parameter. We provide the exact approach to compute the run-length distribution, and through an extensive simulation study, we compare the performance of the proposed chart with existing nonparametric charts, such as the exponentially weighted moving average signed-rank (EWMA-SR), the generally weighted moving average signed-rank (GWMA-SR), the double exponentially weighted moving average signed-rank (DEWMA-SR), and the double generally weighted moving average sign (DGWMA-SN) charts, as well as the parametric DGWMA- X¯ chart for subgroup averages. The simulation results show that the DGWMA-SR chart (with suitable parameters) is more sensitive than the other competing charts for small shifts in the location parameter and performs as well as the other nonparametric charts for larger shifts. Finally, two examples are given to illustrate the application of the proposed chart.  相似文献   

8.
The statistical performance of traditional control charts for monitoring the process shifts is doubtful if the underlying process will not follow a normal distribution. So, in this situation, the use of a nonparametric control charts is considered to be an efficient alternative. In this paper, a nonparametric exponentially weighted moving average (EWMA) control chart is developed based on Wilcoxon signed‐rank statistic using ranked set sampling. The average run length and some other associated characteristics were used as the performance evaluation of the proposed chart. A major advantage of the proposed nonparametric EWMA signed‐rank chart is the robustness of its in‐control run length distribution. Moreover, it has been observed that the proposed version of the EWMA signed‐rank chart using ranked set sampling shows better detection ability than some of the competing counterparts including EWMA sign chart, EWMA signed‐rank chart, and the usual EWMA control chart using simple random sampling scheme. An illustrative example is also provided for practical consideration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Nonparametric control charts are used in process monitoring when there is insufficient information about the form of the underlying distribution. In this article, we propose a triple exponentially weighted moving average (TEWMA) control chart based on the sign statistic for monitoring the location parameter of an unknown continuous distribution. The run-length characteristics of the proposed chart are evaluated performing Monte Carlo simulations. We also compare its statistical performance with existing nonparametric sign charts, such as the cumulative sum (CUSUM), exponentially weighted moving average (EWMA), generally weighted moving average (GWMA), and double exponentially weighted moving average (DEWMA) sign charts as well as the parametric TEWMA-X¯ chart. The results show that the TEWMA sign chart is superior to its competitors, especially for small shifts. Moreover, two examples are given to demonstrate the application of the new scheme.  相似文献   

10.
Quality has become a key determinant of success in all aspects of industry. Exponentially weighted moving average control chart is an important tool of statistical process control used to monitor and improve quality of industrial processes. To enhance the performance of control charts, there are many strategies including the choice of an efficient plotting statistic, the choice of an efficient sampling design, the application of runs rules, and the use auxiliary information among many others. In this study, we propose nine different signaling schemes to enhance the performance of an exponentially weighted moving average control chart for location parameter, which is based on the exploitation of auxiliary information. Performance evaluation of the proposed schemes is carried out in terms of average run length. Comparisons of proposals are made with the classical as well as the auxiliary based exponentially weighted moving average and cumulative sum charts, which indicate that the proposed schemes perform better than the comparative counterparts under discussion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
ISO/DIS 7870 has presented the cumulative sum chart, the moving average chart, and the exponentially weighted moving average chart as control charts using accumulated data. In this paper, we compare the three control charts in terms of change-point estimation. We show the probability distribution, the bias and the mean square error of the change-point estimators using a Markov process and Monte Carlo simulation. These control charts have almost equivalent performances based on average run length considerations when parameters of each control chart are set appropriately. However, from the viewpoint of change-point estimation we recommend the CUSUM chart.  相似文献   

12.
Since the inception of control charts by W. A. Shewhart in the 1920s, they have been increasingly applied in various fields. The recent literature witnessed the development of a number of nonparametric (distribution‐free) charts as they provide a robust and efficient alternative when there is a lack of knowledge about the underlying process distribution. In order to monitor the process location, information regarding the in‐control (IC) process median is typically required. However, in practice, this information might not be available due to various reasons. To this end, a generalized type of nonparametric time‐weighted control chart labeled as the double generally weighted moving average (DGWMA) based on the exceedance statistic (EX) is proposed. The DGWMA‐EX chart includes many of the well‐known existing time‐weighted control charts as special or limiting cases for detecting a shift in the unknown location parameter of a continuous distribution. The DGWMA‐EX chart combines the better shift detection properties of a DGWMA chart with the robust IC performance of a nonparametric chart, by using all the information from the start until the most recent sample to decide if a process is IC or out‐of‐control. An extensive simulation study reveals that the proposed DGWMA‐EX chart, in many cases, outperforms its counterparts.  相似文献   

13.
Distribution-free (nonparametric) control charts can play an essential role in process monitoring when there is dearth of information about the underlying distribution. In this paper, we study various aspects related to an efficient design and execution of a class of nonparametric Phase II exponentially weighted moving average (denoted by NPEWMA) charts based on exceedance statistics. The choice of the Phase I (reference) sample order statistic used in the design of the control chart is investigated. We use the exact time-varying control limits and the median run-length as the metric in an in-depth performance study. Based on the performance of the chart, we outline implementation strategies and make recommendations for selecting this order statistic from a practical point of view and provide illustrations with a data-set. We conclude with a summary and some remarks.  相似文献   

14.
Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are commonly used for monitoring the process mean. In this paper, a new hybrid EWMA (HEWMA) control chart is proposed by mixing two EWMA control charts. An interesting feature of the proposed control chart is that the traditional Shewhart and EWMA control charts are its special cases. Average run lengths are used to evaluate the performances of each of the control charts. It is worth mentioning that the proposed HEWMA control chart detects smaller shifts substantially quicker than the classical CUSUM, classical EWMA and mixed EWMA–CUSUM control charts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Monitoring of time between events (TBE) instead of the number of events is used in high‐quality processes where the events occur rarely. This article presents a double generally weighted moving average control chart with a lower time‐varying control limit to monitor the TBE (regarded as DGWMA‐TBE chart). The design parameters of the proposed chart are provided, and through a simulation study, it is shown that the DGWMA‐TBE chart is more effective than the DEWMA and GWMA charts in detecting moderate to large shifts. Furthermore, the DGWMA‐TBE chart is very robust for the same range of shifts when the TBE observations follow a Weibull or a lognormal distribution. Finally, examples are also presented to enhance the performance of the proposed chart.  相似文献   

16.
There are many practical situations where the underlying distribution of the quality characteristic either deviates from normality or it is unknown. In such cases, practitioners often make use of the nonparametric control charts. In this paper, a new nonparametric double exponentially weighted moving average control chart on the basis of the signed-rank statistic is proposed for monitoring the process location. Monte Carlo simulations are carried out to obtain the run length characteristics of the proposed chart. The performance comparison of the proposed chart with the existing parametric and nonparametric control charts is made by using various performance metrics of the run length distribution. The comparison showed the superiority of the suggested chart over its existing parametric and nonparametric counterparts. An illustrative example for the practical implementation of the proposed chart is also provided by using the industrial data set.  相似文献   

17.
A traditional approach to monitor both the location and the scale parameters of a quality characteristic is to use two separate control charts. These schemes have some difficulties in concurrent tracking and interpretation. To overcome these difficulties, some researchers have proposed schemes consisting of only one chart. However, none of these schemes is designed to work with individual observations. In this research, an exponentially weighted moving average (EWMA)‐based control chart that plots only one statistic at a time is proposed to simultaneously monitor the mean and variability with individual observations. The performance of the proposed scheme is compared with one of the two other existing combination charts by simulation. The results show that in general the proposed chart has a significantly better performance than the other combination charts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Control charts are the most extensively used technique to detect the presence of special cause variations in processes. They can be classified into memory and memoryless control charts. Cumulative sum and exponentially weighted moving average control charts are memory‐type control charts as their control structures are developed in such a way that the past information is not ignored as it is done in the case of memoryless control charts, like the Shewhart‐type control charts. The present study is based on the proposal of a new memory‐type control chart for process dispersion. This chart is named as CS‐EWMA chart as its plotting statistic is based on a cumulative sum of the exponentially weighted moving averages. Comparisons with other memory charts used to monitor the process dispersion are done by means of the average run length. An illustration of the proposed technique is done by applying the CS‐EWMA chart on a simulated dataset. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The exponentially weighted moving average (EWMA) control chart is a memory‐type process monitoring tool that is frequently used to monitor small and moderate disturbances in the process mean and/or process dispersion. In this study, we propose 2 new memory‐type control charts for monitoring changes in the process dispersion, namely, the generally weighted moving average and the hybrid EWMA charts. We use Monte Carlo simulations to compute the run length profiles of the proposed control charts. The run length comparisons of the proposed and existing charts reveal that the generally weighted moving average and hybrid EWMA charts provide better protection than the existing EWMA chart when detecting small to moderate shifts in the process dispersion. An illustrative dataset is also used to show the superiority of the proposed charts over the existing chart.  相似文献   

20.
The continuous monitoring of the machine is beneficial in improving its process reliability through reflected power function distribution. It is substantial for identifying and removing errors at the early stages of production that ultimately benefit the firms in cost-saving and quality improvement. The current study introduces control charts that help the manufacturing concerns to keep the production process in control. It presents an exponentially weighted moving average and extended exponentially weighted moving average and then compared their performance. The percentiles estimator and the modified maximum likelihood estimator are used to constructing the control charts. The findings suggest that an extended exponentially weighted moving average control chart based on the percentiles estimator performs better than exponentially weighted moving average control charts based on the percentiles estimator and modified maximum likelihood estimator. Further, these results will help the firms in the early detection of errors that enhance the process reliability of the telecommunications and financing industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号