首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
xNd(Zn1/2Ti1/2)O3–(1?x)Ba0.6Sr0.4TiO3 (xNZT–BST) thin films were fabricated on Pt/Ti/SiO2/Si substrates by sol–gel method with = 0, 3%, 6%, and 10%. The structures, surface morphology, dielectric and ferroelectric properties, and thermal stability of xNZT–BST thin films were investigated as a function of NZT content. It was observed that the introduction of NZT into BST decreased grain size, dielectric constant, ferroelectricity, tunability, and significantly improved dielectric loss and dielectric thermal stability. The corresponding reasons were discussed. The 10%NZT–BST thin film exhibited the least dielectric loss of 0.005 and the lowest temperature coefficient of permittivity (TCP) of 3.2 × 10?3/°C. In addition, the figure of merit (FOM) of xNZT–BST (x = 3%, 6%, and 10%) films was higher than that of pure BST film. Our results showed that the introduction of appropriate NZT into BST could modify the dielectric quality of BST thin films with good thermal stability. Especially for the 3%NZT–BST thin film, it showed the highest FOM of 33.58 for its appropriate tunability of 32.87% and low dielectric loss of 0.0098.  相似文献   

2.
《Polymer Composites》2017,38(4):774-781
In this article, a series of new silica/polyimide (SiO2/PI) nanocomposite films with high dielectric constant (>4.0), low dielectric loss (<0.0325), high breakdown strength (288.8 kV mm−1), and high volume resistivity (2.498 × 1014 Ω m) were prepared by the hydrolysis of tetraethyl orthosilicate in water‐soluble poly(amic acid) ammonium salt (PAAS). The chemical structure of nanocomposite films compared with the traditional pure PI was confirmed by Fourier transform infrared spectroscopy and X‐ray diffraction patterns. The results indicated that both the PAAS and the polyamide acid (PAA) material were effectively converted into the corresponding PI material through the thermal imidization and the amorphous SiO2 was embedded in the nanocomposite films without structural changes. Thermal stability of the nanocomposite films was increased though mechanical property was generally decreased with increasing the mass fraction of SiO2. All the nanocomposite films exhibited an almost single‐step thermal decomposition behavior and the average decomposition temperature was about 615°C. It was concluded that the effective dispersion of SiO2 particles in PI matrix vigorously improved the comprehensive performance of the SiO2/PI nanocomposite films and expanded their applications in the electronic and environment‐friendly industries. POLYM. COMPOS., 38:774–781, 2017. © 2015 Society of Plastics Engineers  相似文献   

3.
In order to meet the requirements of polymer dielectric materials for high thermal stability and excellent dielectric properties in the application of high-temperature film capacitors, a series of polyimide (PI) films are fabricated by introducing a self-synthesized aniline trimer (ACAT) with a conjugated structure in this work. Since the conjugated ACAT in the main chains of PI improves the electron polarization and carrier mobility of the PI molecular chains, the dielectric constant of the ACAT-PI films is greatly enhanced (4.4–7.4). Meanwhile, the dissipation factor does not increase apparently (0.002–0.013). The dielectric properties are stable even when the temperature is up to 200 °C, the thermal degradation temperature is as high as 450 °C, and the mechanical properties are also excellent (70–105 MPa). Among all the films, the PI film with 5 mol% ACAT exhibits the maximal energy density of 3.6 J cm−3 under the field of 426 kV mm−1, the high tensile strength (90 MPa) and the excellent thermal stability (Td5 = 515 °C). The work paves the way to prepare high-temperature polymer dielectric film materials with high energy storage density.  相似文献   

4.
Polymer dielectrics, are commonly used as insulating materials for electronic products. Light weight, good mechanical properties and high thermal conductivity are important properties. However, electrical and thermal parameters are interrelated, and it is challenging to have a dielectric polymer that is also resistant to high temperatures and high thermal conductivity. Hence, high-performance composite films were prepared by the method of post-solid phase chemical reaction using polyarylene ether nitrile (PEN) and divinyl siloxane-bisbenzocyclobutene (BCB) as raw materials. First, parameters of the curing reaction were determined by rheological and activation energy calculations. Then, through adjusting the content of BCB resin and treatment temperature, the performance of PEN/BCB composites could be tuned. Thermal properties have been studied by differential scanning calorimetry, dynamic mechanical analysis, thermal gravimetric analysis, and hot-disk method. Here, the PEN/BCB composite electric insulating materials with outstanding thermal performance (Tg: 208–400°C, T5%: 469–544°C, thermal conductivity: 1.270–2.215 W/m K). Besides, its mechanical and dielectric properties were investigated in detail. It is noteworthy that the tensile strength of composite film can exceed a maximum of 130 MPa, which is 23.19% higher compared to the untreated one. Also, PEN/BCB composites own low dielectric constant (2.27–4.08 at 1 KHz), and the relationship between frequency or a wide temperature range and dielectric constant/loss is stable. Thus, it has a greater potential for applications in electronics in high-temperature environments.  相似文献   

5.
Polypyrrole (PPY) was electrophilically polycondensed with phthalic anhydride (PA) and pyromellitic dianhydride (PMDA). PPY–PA and PPY–PMDA polycondensates were evaluated in regard to their thermal stability and dielectric and conductivity behavior. The overall thermal stability is in the order PPY < PPY–PA < PPY–PMDA, which may be rationalized in terms of intra- and intermolecularly cross-linked structures of the polycondensates. IR spectral analyses of PPY–PA and PPY–PMDA subjected to heating at 300, 400, 500, and 550°C, respectively, were conducted to understand some of the structural changes in the polymer matrices. Both PPY–PA and PPY–PMDA exhibit high dielectric constants (200 and 125) at low frequency (103 Hz), which fall monotonically with increasing frequency, suggesting the possibility of interfacial polarization. The conductivity values of PPY–PA and PPY–PMDA are in the range 10?3–10?4 ohm?1 cm?1, which are conspicuously lower than that for unmodified PPY (2.5). This is due to the adverse effect of incresing temperature on the PPY chain stability, whereby structural conjugation and eventually conductivity will be affected. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
Copolymers of poly(acrylonitrile‐co‐ethyl methacrylate), P(AN‐EMA), with three different EMA content and parent homopolymers were synthesized by emulsion polymerization. The chemical composition of copolymers were identified by FTIR, 1H‐NMR and 13C‐NMR spectroscopy. The thermal properties of copolymers were modified by changing the EMA content in copolymer compositions. Various amounts of LiClO4 salt loaded (PAN‐co‐PEMA) copolymer films were prepared by solution casting. The dielectric properties of these films at different temperatures and frequencies were investigated. It was found that the dielectric constant and ac‐conductivity of copolymer films were strongly influenced by the salt amounts and EMA content in copolymers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Si–O–C‐based amorphous or nanostructured materials are now relatively common and of interest for numerous electronic, optical, thermal, mechanical, nuclear, and biomedical applications. Using plasma‐enhanced chemical vapor deposition (PECVD), hydrogen atoms are incorporated into the system to form SiOCH dielectric films with very low dielectric constants (k). While these low‐k dielectrics exhibit chemical stability as deposited, they tend to lose hydrogen and carbon (as labile organic groups) and convert to SiO2 during thermal annealing and other fabrication processes. Therefore, knowledge of their thermodynamic properties is essential for understanding the conditions under which they can be stable. High‐temperature oxidative drop solution calorimetry measurement in molten sodium molybdate solvent at 800°C showed that these materials possess negative formation enthalpies from their crystalline constituents (SiC, SiO2, C, Si) and H2. The formation enthalpies at room temperature become less exothermic with increasing carbon content and more exothermic with increasing hydrogen content. Fourier transform infrared spectroscopy (FTIR) spectroscopy examined the structure from a microscopic perspective. Different from polymer‐derived ceramics with similar composition, these low‐k dielectrics are mainly comprised of Si–O(C)–Si networks, and the primary configuration of carbon is methyl groups. The thermodynamic data, together with the structural analysis suggest that the conversion of sp2 carbon in the matrix to surface organic functional groups by incorporating hydrogen increases thermodynamic stability. However, the energetic stabilization by hydrogen incorporation is not enough to offset the large entropy gain upon hydrogen release, so hydrogen loss during processing at higher temperatures must be managed by kinetic rather than thermodynamic strategies.  相似文献   

8.
《Polymer Composites》2017,38(9):1792-1799
A series of poly(acrylonitrile‐co‐hexyl methacrylate), PAN‐co‐PHMA, copolymers with various hexyl methacrylate (HMA) contents were synthesized by emulsion technique. The incorporation of HMA units into the copolymers was confirmed by Fourier transform infrared and proton nuclear magnetic resonance (1H‐NMR) spectroscopy. Glass transition temperatures (T g) and thermal decomposition temperatures of copolymers were determined by differential scanning calorimetry and thermogravimetric analysis. The T g of copolymers were lowered monotonically by increasing HMA content, while thermal stabilities of copolymers were enhanced. The frequency dependence of dielectric properties of three different amounts of LiClO4 salt doped copolymer films was investigated. The influence of molar fraction of HMA on dielectric constant and ac‐conductivity of copolymer films was examined. Samples with higher HMA contents showed better stability and conductivity, as a result of increase in free volume and the mobility of the dipoles. The ac conductivity of copolymers was also improved by increasing LiClO4 salt which was due to the existence of more charge carriers. PAN(88)‐co‐PHMA(12) copolymer with 1.5 mol% of lithium salt exhibited ionic conductivity of the 7.8 × 10−4 S/cm at 298 K. POLYM. COMPOS., 38:1792–1799, 2017. © 2015 Society of Plastics Engineers  相似文献   

9.
A new hybrid polymer electrolyte system based on chemical‐covalent polyether and siloxane phases is designed and prepared via the sol–gel approach and epoxide crosslinking. FT‐IR, 13C solid‐state NMR, and thermal analysis (differential scanning calorimetry (DSC) and TGA) are used to characterize the structure of these hybrids. These hybrid films are immersed into the liquid electrolyte (1M LiClO4/propylene carbonate) to form plasticized polymer electrolytes. The effects of hybrid composition, liquid electrolyte content, and temperature on the ionic conductivity of hybrid electrolytes are investigated and discussed. DSC traces demonstrate the presence of two second‐order transitions for all the samples and show a significant change in the thermal events with the amount of absorbed LiClO4/PC content. TGA results indicate these hybrid networks with excellent thermal stability. The EDS‐0.5 sample with a 75 wt % liquid electrolyte exhibits the ionic conductivity of 5.3 × 10?3 S cm?1 at 95°C and 1.4 × 10?3 S cm?1 at 15°C, in which the film shows homogenous and good mechanical strength as well as good chemical stability. In the plot of ionic conductivity and composition for these hybrids containing 45 wt % liquid electrolyte, the conductivity shows a maximum value corresponding to the sample with the weight ratio of GPTMS/PEGDE of 0.1. These obtained results are correlated and used to interpret the ion conduction behavior within the hybrid networks. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1000–1007, 2006  相似文献   

10.
Development of thin, flexible, light‐weight, renewable, low‐cost, and environmentally friendly electrode materials are highly feasible in era of modern disposable electronic technology. This article presents the synthesis and dielectric studies of polypyrrole (PPy) coated pulp fibers, directly collected from wasted egg holder's tray. PPy coated pulp fibers converted into compact sheet for the development of potential renewable and low‐cost electrode materials. The morphology, chemical structure, and thermal stability of naked and PPy coated pulp fibril sheets were investigated by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA), respectively. PPy coated pulp fibers revealed better thermal stability and compactness of sheet morphology. Impedance measurements showed a high value of dielectric constant of 1.15 × 106 at 0.5 Hz and conductivity of 7.45 × 10?4 S/cm at room temperature for PPy coated pulp fibril sheet. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42422.  相似文献   

11.
《Ceramics International》2015,41(6):7394-7401
The Co1−xMnxFe2O4 (0≤x≤0.5) spinel ferrite thin films were deposited on quartz substrates by chemical spray pyrolysis technique. The effect of Mn substitution on to the structural, electrical, dielectric and NO2 gas sensing properties of cobalt ferrite thin films was studied. The X-ray diffraction analysis reveals that deposited films exhibit spinel cubic crystal structure. The lattice constant increases with the increase in Mn2+ content. The decrease in resistivity with increase in temperature suggests that the films have a semiconducting nature. The room temperature dielectric properties such as dielectric constant (ε′), loss tangent (tanδ), dielectric loss (ε′′) and AC conductivity have been studied in the frequency range 20 Hz–1 MHz. The film shows the highest sensor response at moderately low (150 °C) operating temperature. The effect of operating temperature, gas concentration, film selectivity and substitution of Mn on to gas response is carefully studied. The manganese substituted cobalt ferrite films are extremely selective towards NO2 with a 20 times gas response compared with other gases. The gas response achieved nearly 92% of its initial value after 150 days, indicating good stability of the films.  相似文献   

12.
The effects of chemical structure of diamines on the properties of polyetherimide (PEI) nanocomposite films prepared by the sol‐gel process were investigated. For meta diamine, nanocomposites with improved thermal, mechanical, and dielectric properties can be prepared by a sol‐gel process from soluble PEI via chemical imidization, with silica content up to 10%. However, for the PEI with pPDA as diamine and bisphenol A dianhydride, a two‐stage sol‐gel process via thermal imidization was necessary to prepare the nanocomposites. The thermal stability and mechanical properties were improved with the addition of up to 5 wt % of silica content. The variation could be attributed to the fact that differences in the compatibility between PEI and SiO2 for two kinds of PEI with the different meta and para structure of the diamine monomer. The morphology of the fracture surfaces investigated by SEM showed a finely interconnected or cocontinuous phase for PEI nanocomposites with the silica content of up to 10% and 5 wt % for mPDA and pPDA as diamine, respectively. At higher silica contents, thermal and mechanical properties were reduced due to the aggregation of SiO2. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
Hafnium zirconium oxide (HZO) is promising for applications in future memory devices and energy storage and harvesting. While many studies have focused upon the dielectric and structural properties of HZO, much less investigated are their thermal properties, particularly in thin-film form. We present the first report on the thermal conductivity of plasma-enhanced atomic layer deposited (PEALD) HZO thin films. Steady-state thermoreflectance measures the effective thermal conductivity of undoped and yttrium-doped HZO films and their interfaces. The effective thermal conductivity of the undoped film is found to be 0.75 W m–1 K–1, which is comparable to those reported previously for thermal ALD HZO films with similar composition. With increasing yttrium doping level, the effective thermal conductivity slightly decreases down to 0.67 W m–1 K–1 owing to dopant scattering of phonons. Our PEALD HZO films are nanocrystalline as observed by grazing-incidence X-ray diffraction and transmission electron microscopy.  相似文献   

14.
Gamma radiation-induced conductivity and permanent conductivity effects produced by high doses of 2 MeV electrons have been measured in two polyimidazopyrrolone polymers. Radiation-induced conductivity levels are small compared to those found in many common insulating polymers. Permanent increases in dark conductivity produced by accumulated doses of 5×109 rad at temperatures up to 300°C are not sufficient to inhibit ultraviolet-visible photoconductivity. High doses of 2 MeV electrons (5×109 rad) under the same temperature conditions produce no discernible effect on dielectric properties. Both radiation-induced conductivity and permanent dark conductivity increases were much smaller in one polymer (BTDA–DAB), suggesting the possibility of optimizing radiation resistance in this class of polymers by means of chemical structure variation. The radiolytic and thermal stability reported previously for this class of polymers has been generally confirmed, with particular reference to electrical properties.  相似文献   

15.
Due to its extreme hardness, chemical and mechanical stability, large band gap, low dielectric constant and highest thermal conductivity, diamond film is expected to be an excellent electronic packaging material for high frequency and high power devices. Under an alcohol concentration of 0.8% and a substrate temperature of 850 °C, high quality diamond films deposited on alumina are obtained by hot filament chemical vapor deposition (HFCVD) method using the optimum parameters determined by an infrared spectroscopic ellipsometer. Prior to the deposition of diamond film, carbon ions are implanted into alumina wafers to release the residual stress between interfaces. The measurement results indicate that dielectric properties and the thermal conductivity of diamond film/alumina composites are improved further with the increase of diamond coating. When the thickness of diamond coating is up to 100 μm, dielectric constant and dielectric loss of diamond film/alumina composite are 6.5 and 1.1 × 10 3, respectively. However, a thermal conductivity of 3.98 W/cm·K is obtained.  相似文献   

16.
Stability, including thermal stability, conductivity stability in air and after thermal treatment (100–200°C), of the polyaniline (PANI) films synthesized by a doping–dedoping–redoping method was investigated. It was found that thermogravimetric analysis (TGA) curves undergo three steps: loss of water or solvent, dedoping and decomposition, and those depend on the counterions. Compared with PANI films doped with camphor sulfonic acid (CSA) in m‐cresol, the thermal stability of the doped PANI films is improved by the new method, and thermal stability in the order of PANI–H3PO4 > PANI–p‐TSA > PANI–H2SO4 > PANI–HCl, PANI–HClO4 > PANI–CSA was observed. The conductivity of the doped PANI films at room temperature was reduced after thermal treatment, and it is dependent of the counterions. It was found that the conductivity stability of PANI–p‐TSA and PANI–CSA is the best below 200°C. When the doped PANI films were placed in air, their conductivity decrease slowly with time due to deproton, and also depends on the counterions. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 615–621, 1999  相似文献   

17.
Lanthanum zirconate (LZ) films with a controllable La/Zr composition were prepared by laser enhanced chemical vapor deposition (LCVD). The effects of different precursors ratio, i.e. the La(dpm)3/Zr(dpm)4 molar ratio, on composition, crystal structure, morphology and electrical conductivity of films were investigated. The formation region of columnar and purely cubic pyrochlore structured LZ films with a controllable La/Zr molar ratio in a wide range of 0.51–2.53 was mapped. Crystal structure changed with the different precursor's ratio, which was caused by atomic substitution between lanthanum and zirconium, being proved by combining with experimental and theoretical XRD patterns. It is found that electrical conductivity of non-stoichiometric LZ films is up to 4.3?×?10?3 S?cm?1 at 1073?K. The columnar pyrochlore structured LZ films with a wide region of non-stoichiometric compositions are expected to be candidates for many potential applications, such as dielectric, thermal barrier coatings and nuclear waste treatment materials.  相似文献   

18.
In this study, reduced graphene oxide (RGO) has been introduced as conductive filler within polyaniline (PAni) nanotubes (PAniNTs) by in situ chemical reduction method to enhance the properties of PAniNTs. The effect of varied concentration of in situ reduced GO on the structural, thermal, electrical, and dielectric properties of RGO–PAniNTs nanocomposites have been investigated by high resolution transmission electron microscope, X‐ray diffraction, Fourier transform infrared, thermogravimetric analysis, IV characteristics, and impedance analyzer. The enhanced thermal stability of the nanocomposites has been analyzed from the derivative thermogravimetric curves in terms of onset and rapid decomposition temperature. The transport mechanisms have been studied by fitting the nonlinear IV characteristics to the Kaiser model. The dielectric relaxation phenomena have been investigated by permittivity and modulus formalisms. Characteristic relaxation frequency of RGO–PAniNTs nanocomposites shifts toward higher frequency with increasing RGO concentration indicating a distribution in conductivity relaxation. The distribution of relaxation time has been studied by fitting the imaginary modulus spectra of the nanocomposites to Bergman modified KWW function. The ac conductivity spectra are fitted to the Jonscher's power law equation and enhanced conductivity value of 1.26 × 10−3 S cm−1 is obtained for 40 wt % of RGO compared to 1.22 × 10−4 S cm−1 for PAniNTs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45883.  相似文献   

19.
Proton exchange membranes were prepared by radiation‐induced grafting of styrene onto commercial poly(tetrafluoroethylene‐co‐hexafluoropropylene) films using a simultaneous irradiation technique followed by a sulfonation reaction. The resulting membranes were characterized by measuring their physicochemical properties such as water uptake, ion exchange capacity, hydration number, and proton conductivity as a function of the degree of grafting. The thermal properties (melting and glass transition temperatures) and thermal stability of the membrane were also investigated using differential scanning calorimetry and thermal gravimetric analysis, respectively. Membranes having degrees of grafting of 16% and above showed proton conductivity of the magnitude of 10−2 Ω−1 cm−1 at room temperature, as well as thermal stability at up to 290°C under an oxygen atmosphere. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2443–2453, 2000  相似文献   

20.
Exposure of 25-μm films of polyimide and polyamideimide to high doses (> 1015/cm2) of energetic ions (energy ≥ 100 keV) resulted in physical and chemical modification of the film surface. Cross-section microscopy revealed damaged layers extending beyond the projected ion range; conductivity in this damaged layer was found to be as high as 103ω?1 cm?1. Surface conductivity was found to be a function of ion energy and dose, with an exponential energy dependence from 200 to 900 keV. The temperature dependence and thermal stability of the surface conductivity were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号