首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In the present study, high-speed side milling experiments of H13 tool steel with coated carbide inserts were conducted under different cutting parameters. The microhardness and microstructure changes of the machined surface and subsurface were investigated. A finite element model, taking into account the actual milling process, was established based on the commercial FE package ABAQUS/Explicit. Instantaneous temperature distributions beneath the machined surface were analyzed under different cutting speeds and feed per tooth based on the model. It was found that the microhardness on the machined surface is much higher than that in the subsurface, which indicates that the surface materials experienced severe strain hardening induced by plastic deformation during the milling process. Furthermore, the hardness of machined surface decreases with the increase of cutting speed and feed per tooth due to thermal softening effects. In addition, optical and scanning electron microscope (SEM) was used to characterize the microstructures of cross sections. Elongated grains due to material plastic deformation can be observed in the subsurface, and white and dark layers are not obvious under present milling conditions. The thickness of plastic deformation layer beneath the machined surface increases from 3 to 10 μm with the increase of cutting speed and feed per tooth. The corresponding results were found to be consistent and in good agreement with the depth of heat-affected zone in finite element analysis (FEA).  相似文献   

2.
车铣复合加工的切屑形态分析   总被引:2,自引:1,他引:2  
通过对车铣复合加工高强度钢的不同切屑形态分析表明,随轴向进给量和切削深度的增加,切屑变长.在建立车铣切削变形模型的基础上,分析了车铣切屑的形成机理.切削层金属裂纹的周期破裂和形成是车铣切屑形成的根本原因.  相似文献   

3.
The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-speed milling experiments are carried out in order to improve the machining quality and reveal the machining mechanism. The typical topography features of machined surface are observed by scan electron microscope(SEM). The results show that the milled surface topography is mainly characterized by the plastic shearing deformation surface and material piling zone. The material flows plastically along the end cutting edge of the flat-end milling tool and meanwhile is extruded by the end cutting edge, resulting in that materials partly adhere to the machined surface and form the material piling zone. As the depth of cut and the feed per tooth increase, the plastic flow of materials is strengthened and the machined surface becomes rougher. However, as the cutting speed increases, the plastic flow of materials is weakened and the milled surface becomes smoother. The cutting parameters (e.g. cutting speed, feed per tooth and depth of cut) influencing the surface roughness are analyzed. It can be concluded that the roughness of the machined surface formed by the end cutting edge is less than that by the cylindrical cutting edge when a cylindrical flat-end mill tool is used for milling. The proposed research provides the typical topography features of machined surface of the anti-rust aluminum alloy AlMn1Cu in high speed milling.  相似文献   

4.
研究了面铣刀的主偏角对切屑厚度和每齿进给量的影响,铣削中每齿进给量的决定因素,切削宽度与刀具直径的比值对切屑厚度的影响等问题进行理论分析,同时结合变速箱壳体铣削加工过程进行验证,解决了合理选择铣刀及切削参数以提升加工效率的问题。  相似文献   

5.
Geometry of chip formation in circular end milling   总被引:1,自引:0,他引:1  
Machining along continuous circular tool-path trajectories avoids tool stoppage and even feed rate variation. This helps particularly in high-speed milling by reducing the effect of the machine tool mechanical structure and cutting process dynamics. With the increase in popularity of this machining concept, the need for detailed study of a valid chip formation in circular end milling is becoming necessary for accurate kinematic and dynamic modeling of the cutting process. In this paper, chip formation during circular end milling is studied with a major focus on feed per tooth and undeformed chip thickness along with their analytical derivations and numerical solutions. At first, the difference in the feed per tooth formulation for end milling along linear and circular tool-path trajectories is presented. In the next step, valid formulation of the undeformed chip thickness in circular end milling is derived by considering an epitrochoidal tooth trajectory with a wide range of the tool-path radius. The complex transcendental equations encountered in the derivation are dealt with, by a case-based approach to obtain closed-form analytical solutions. The analytical solutions of undeformed chip thickness are validated with results of numerical simulations of tool and tooth trajectories for circular end milling and also compared to the linear end milling. The close resemblance between analytical and numerical calculations of the undeformed chip thickness in circular end milling suggests validity of the proposed analytical formulations. As a case study, the cutting forces in circular end milling are calculated based on the derived chip thickness formulations and an existing mechanistic model. The calculation results reiterate the need of taking into account adjusted feed per tooth and valid chip thickness formulations in circular end milling, especially for small tool-path radii, for more realistic process modeling.  相似文献   

6.
For metallic or composite materials, the judicious choice of cutting conditions depends on several factors that may be of such objectives (time, cost of production, material removal rate, etc.) or constraints (cutting force, temperature in the machining area, consumed power, etc.). The quality of the results depends on the optimization method and the efficiency of the algorithm involved. In this paper, graphical and particle swarm optimization (PSO) methods are proposed. They aim to determine the optimal cutting conditions (cutting speed and feed per tooth) in slotting of multidirectional carbon fiber reinforced plastic laminate (CFRP), referenced G803/914, with three knurled tools having different geometries. The experiences that led to the measures of roughness, temperature, cutting efforts, and consumed power are made in the same working conditions with cutting speed ranging from 80 to 200 m/min and feed per tooth from 0.008 to 0.060 mm/rev/tooth. The results illustrate that for the graphical method, the optimum cutting speed depends on the performance “maximum total removal rate” and is the same for all the studied knurled tools while optimum feed per tooth depends on the “roughness” performance: its value depends on the tool geometry. For the PSO technique, optimum cutting speed and feed per tooth values are variable and depend on the tool geometry.  相似文献   

7.
基于金属材料塑性变形理论,利用有限元分析软件,建立了金属切削过程中的晶体变形模型,对二维正交金属切削过程中的晶体塑性变形进行了数值模拟。将仿真结果与实验数据进行了对比,验证了相关理论和模型的有效性。  相似文献   

8.
This article is concerned with the cutting forces and surface integrity in high-speed side milling of Ti-6Al-4V titanium alloy. The experiments were conducted with coated carbide cutting tools under dry cutting conditions. The effects of cutting parameters on the cutting forces, tool wear and surface integrity (including surface roughness, microhardness and microstructure beneath the machined surface) were investigated. The velocity effects are focused on in the present study. The experimental results show that the cutting forces in three directions increase with cutting speed, feed per tooth and depth of cut (DoC). The widths of flank wear VB increases rapidly with the increasing cutting speed. The surface roughness initially decreases and presents a minimum value at the cutting speed 200 m/min, and then increases with the cutting speed. The microstructure beneath the machined surfaces had minimal or no obvious plastic deformation under the present milling conditions. Work hardening leads to an increment in micro-hardness on the top surface. Furthermore, the hardness of machined surface decreases with the increase of cutting speed and feed per tooth due to thermal softening effects. The results indicated that the cutting speed 200 m/min could be considered as a critical value at which both relatively low cutting forces and improved surface quality can be obtained.  相似文献   

9.
Most of the energy spent on metal cutting is due to the unavoidable plastic deformation of the layer being removed during its transformation into the chip. Based on the new principle of metal cutting being a purposeful fracture process, the dominant parameter that controls this process in orthogonal metal cutting (OMC) is the triaxiality state. Therefore, the chip triaxiality state in the deformation zone can be correlated to the energy of the unwanted plastic deformation for a particular cutting configuration. This article investigates this type of correlation by changing the cutting tool geometry. A series of finite element (FE) simulations were performed for various tool rake angles shows a strong relationship between the stress triaxiality state parameter in the deformation zone and the required cutting force components.  相似文献   

10.
This paper discusses an experimental approach to assess the machining characteristics in microscale end milling operation through a systematic experimentation procedure. Microchannels were machined on brass plates using a carbide end mill of 1?mm diameter to analyze the effect of chip load (feed per tooth) and cutting speed on the surface roughness, specific cutting pressure, and cutting forces during microend milling operation. The tangential and radial components of forces were analyzed with the help of a three-dimensional model using the force signals acquired through KISTLER dynamometer. Feed per tooth and the interaction of cutting speed and chip load were identified as the critical parameters affecting the surface roughness of microchannel. Applying the concept of elastic recovery on the side wall surface of microchannels, the minimum chip thickness during the above micromilling operation was evaluated as 0.97???m, and the result was validated by the drastic increase in specific cutting pressure and erratic behavior of cutting forces below a chip load of 1???m.  相似文献   

11.
利用Third wave AdvantEdge FEM软件建立了三维切削模型,对高温合金GH4169进行了高速铣削模拟加工.通过模拟分析得到了切削速度、每齿进给量、切削深度对切削热的影响规律;试验中发现,切削速度的变化对切削温度的影响规律与高速切削理论有出入,切削速度的变化对切削温度的影响较每齿进给量和切削深度大.  相似文献   

12.
选用涂层硬质合金刀具对300M超高强度钢进行高速铣削试验,通过单因素试验和多因素正交试验法,得出铣削参数(主轴转速、每齿进给量、铣削深度)对切削力及表面粗糙度的影响规律及主次关系。对正交试验结果做最小二乘法分析,建立切削力及表面粗糙度与铣削参数之间的经验模型;对经验模型的回归方程及系数做显著性检验,并对其进行参数优化,得出铣削参数的最优组合。结果表明:主轴转速和铣削深度对切削力的作用较大,而每齿进给量对其影响相对较弱;每齿进给量对表面粗糙度作用最强,铣削深度次之,主轴转速对其作用最弱。  相似文献   

13.
在切削速度118m/min~463m/min,每齿进给量0.078mm/z~0.2mm/z,切削深度0.2mm~1mm范围内,研究高速端面铣削某新型高强度钢材料(>42HRc、抗拉强度σb>1.2GPa)过程中切削力的变化规律,考察切削用量对铣削力的交互影响与尺度效应规律,并从切削变形机理上进行讨论与分析,使用残差分析与最小二乘法等统计方法,建立切削力与切削用量经验公式。研究结果表明:高速铣削时,切削深度、每齿进给量和两者之间的交互作用为对主切削力有显著影响的效应因素;该类型高强度钢的单位铣削力为45调质钢的1.0729倍~1.7917倍;非自由切削过程在高速切削条件下将会引发切削力的尺度效应。  相似文献   

14.
结合FANUCoi系统VM850加工中心对塑料尼龙材料进行平面加工试验,观察尼龙在特定加工参数条件下的切屑运动方向和形态。利用Daisy8106型三坐标测量机对加工成型的尼龙表面进行平滑度、平行度测量,分析硬质合金铣刀在不同的每齿进给量与切削深度下塑料尼龙工件的铣削表面质量,得出最佳的每齿进给量fz=0.075mm/r、切削深度Δd=6mm。结果表明,在铣削尼龙的过程中,合理采用每齿进给量、铣削深度、主轴转速等工艺参数,能使产品的平滑度及平行度达到加工的高精度要求,实现尼龙的高速和高质量的铣削。  相似文献   

15.
The prediction model of instantaneous uncut chip thickness is critical for micro-end milling process, which can directly affect the cutting forces, surface accuracy, and process stability of the micro-end milling process. This paper presents an instantaneous uncut chip thickness model systematically based on the actual trochoidal trajectory of tooth and the tool run-out in micro-end milling process. The variable entry and exit angles of tool, which are affected by the tool run-out, are concerned in the model. The related instantaneous uncut chip thickness is evaluated by considering the theoretical instantaneous uncut chip thickness and the minimum uncut chip thickness, which is formulated by two types of material removal mechanisms, in the elastic-plastic deformation region and the complete chip formation region, respectively. In comparison with the instantaneous chip thickness obtained from the conventional model, the feasibility of the proposed model can be proved by the related simulation results with variable process parameters including feed per tooth, radial depth of cut, and tool run-out. In addition, the predicted and measured cutting forces are compared with validate the accuracy of the proposed instantaneous uncut chip thickness model for the micro-end milling process.  相似文献   

16.
This work proposed an improved mechanistic model for prediction of cutting forces in micro-milling process. The combined influences of tool run out, trochoidal trajectory of the tool center, overlapping of tooth, edge radius and minimum chip thickness are incorporated in this model to realize the exact cutting phenomenon. Moreover, an improved undeformed chip thickness algorithm has been presented by considering tool run out, minimum chip thickness and trajectory of all passing teeth for one complete revolution of the tool instead of only the current tooth trajectory. For estimation of tool run out, a model based on the geometry of the two fluted end mill cutter has been developed. Effects of trochoidal trajectory of the tool center and tool run out are found to be significant as each tooth has a different chip load. Further, the effect of minimum chip thickness is found to be significant at lower feed value. The proposed model has been validated by micro-milling experiments on Ti6Al4V-titanium alloys using uncoated flat end mill cutter. The predicted cutting forces were found to be in good agreement with the experimental cutting forces in both feed and cross feed directions.  相似文献   

17.
白层是高速硬切削的特有现象,对加工表面完整性和零件的服役性能有着重要影响。针对高速硬切削加工表面白层问题,进行了对GCrl5淬硬轴承钢高速硬切削试验和表面白层测试,研究了不同切削条件下的白层形成机理,分析了切削速度和刀具磨损状态对白层特征的影响规律。分析结果表明,白层厚度随切削速度和后刀面磨损的增大而增大,而其分布的均匀性和连续性也将变差;切削速度和后刀面磨损的增加引起切削温度升高,导致加工表面快速淬火效应,使得白层厚度增大,其中切削速度的影响较为显著;在切削速度较低(100 m/min左右)时白层的形成机理主要为塑性变形,切削速度超过300 m/min则主要是马氏体相变所致,而在中间切削速度(200 m/min左右)时为2种机理的混合作用结果。  相似文献   

18.
This study focuses on the mechanical drilling of micro-holes in Inconel 718 alloy under wet cutting conditions. Qualitative and quantitative mechanical and metallurgical characterization of the surface and subsurface region was undertaken using nanoindentation, backscatter electron microscopy, electron backscatter diffraction microscopy and transmission electron microscopy. The analysis revealed three different zones, namely, a highly deformed nanostructured surface layer containing ultra-fine and high aspect ratio grains drawn out by large scale deformation, a deformed subsurface layer and finally the unaffected parent metal. The nano-hardness, plastic deformation, microstructure and crystal misorientation were assessed. The correlation between the modified surface and subsurface layers and the cutting conditions was established. The phenomena behind the formation of the different zones were investigated. The results suggest that subsurface alterations are driven by thermo-mechanical loading, causing plasticity and grain refinement by excessive shearing local to the cut surface.  相似文献   

19.
The Ti6Al4V parts produced by the existing selective laser melting (SLM) are mainly confronted with poor surface finish and inevitable interior defects,which substantially deteriorates the mechanical properties and performances of the parts.In this regard,ultrasonically-assisted machining (UAM) technique is commonly introduced to improve the machining quality due to its merits in increasing tool life and reducing cutting force.However,most of the previous studies focus on the performance of UAM with ultrasonic vibrations applied in the tangential and feed directions,whereas few of them on the impact of ultrasonic vibration along the vertical direction.In this study,the effects of feed rate on surface integrity in ultrasonically-assisted vertical milling (UAVM) of the Ti6Al4V alloy manufactured by SLM were systemically investigated compared with the conventional machining (CM) method.The results revealed that the milling forces in UAVM showed a lower amplitude than that in CM due to the intermittent cutting style.The surface roughness values of the parts produced by UAVM were generally greater than that by CM owing to the extra sinusoidal vibration textures induced by the milling cutter.Moreover,the extra vertical ultrasonic vibration in UAVM was beneficial to suppressing machining chatter.As feed rate increased,surface microhardness and thickness of the plastic deformation zone in CM raised due to more intensive plastic deformation,while these two material properties in UAVM were reduced owing to the mitigated impact effect by the high-frequency vibration of the milling cutter.Therefore,the improved surface microhardness and reduced thickness of the subsurface deformation layer in UAVM were ascribed to the vertical high-frequency impact of the milling cutter in UAVM In general,the results of this study provided an in-depth understanding in UAVM of Ti6Al4V parts manufactured by SLM.  相似文献   

20.
为了研究钛合金在铣削过程中切削力随着切削参数的变化规律,建立了三维斜角切削有限元模型。通过对材料本构模型,刀—屑接触摩擦模型和切屑分离准则等关键环节建模,采用通用有限元求解器ABAQUS/Ex-plicit对钛合金Ti6Al4V的斜角切削过程进行了模拟,获得了切削速度v、切削深度ap和每齿进给量fz对切削力的变化趋势及影响程度。模拟结果表明:切削力随着切削深度ap和每齿进给量fz的增大而增大,而随着切削速度增大切削力波动很小。切削深度对切削力的影响最大,进给量次之,切削速度对切削力的影响最小。该模型可以为切削参数的合理选择提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号