共查询到18条相似文献,搜索用时 93 毫秒
1.
简要介绍径向基函数(RBF)神经网路的原理和结构。通过MATLAB语言仿真,进一步研究在设计RBF网络时,散布常数的选择对网络的影响。实验结果表明,在设计RBF网络时,必须选取适当的散布常数,否则会对结果造成较大误差。 相似文献
2.
3.
径向基函数神经网络在多维力传感器标定中的应用 总被引:1,自引:0,他引:1
维间耦合是制约多维力传感器测量精度的主要因素,为了克服传统线性标定方法的局限性,利用径向基函数(RBF)神经网络强非线性逼近能力进行了多维腕力传感器的静态标定,并将其与最小二乘法和BP神经网络标定法作了比较。以研制的六维腕力传感器为对象进行了实验,结果表明,采用RBF神经网络对多维腕力传感器标定比用最小二乘线性标定有更高的标定精度,网络训练速度则大大快于BP神经网络。这种新方法具有一定的实用价值。 相似文献
4.
本文在介绍径向基函数神经网络原理的基础上,研究径向基函数神经网络模型在地下水位预报中的应用,以吉林西部地区为例,应用其1990-2012年的月平均地下水位数据,建立径向基函数神经网络模型。为进一步证明预报结果的准确性,把预报结果与自回归模型的预报结果进行比较。结果表明:径向基函数神经网络模型能很好地进行地下水位预报,同自回归模型相比,径向基函数神经网络模型预报的精度更高,预报结果更具有准确性。 相似文献
5.
测力轮对(Instrumented wheelset)是测量轮轨力最直接最准确的方法。利用有限元法建立测力轮对的有限元模型,并通过计算机模拟研究载荷作用点位置对测力轮对辐板应力的影响,在此基础上,建立加载位置的BP神经网络模型。实践表明,采用BP网络模型仿真的结果可以得到更理想的输出波形,解决或减少了传统组桥过程中存在的一系列问题,证明了所设计的网络具有足够的精度,所建立的网络也是具有应用价值的。 相似文献
6.
7.
在线连续测量轮轨接触点的神经网络方法 总被引:1,自引:1,他引:1
尽管轮轨力测量的测力轮对技术已相对成熟,轮轨作用点位置的测量却一直很困难。作用点位置的在线连续测量对脱轨机理的研究、机车车辆性能的研究有十分重要的意义。在常规测力轮对的基础上,增加一个电桥感应作用点位置的变化。采用神经网络拟合轮轨作用力位置变化与电桥输出间复杂的非线性映射关系,用不同作用点位置下各种横、垂向力的组合来训练神经网络,从而达到由电桥输出值得到作用点位置的目的。实验结果表明,网络不仅训练精度好,而且预测能力也令人满意。 相似文献
8.
9.
10.
11.
12.
14.
This paper reports a meshless method, which is based on radial-basis-function networks (RBFNs), for the static analysis of moderately-thick laminated composite plates using the first-order shear deformation theory. Integrated RBFNs are employed to represent the field variables, and the governing equations are discretized by means of point collocation. The use of integration rather than conventional differentiation to construct the RBF approximations significantly stabilizes the solution and enhances the quality of approximation. The proposed method is verified through the solution of rectangular and non-rectangular composite plates. Numerical results obtained show that the method achieves a very high degree of accuracy and a fast convergence rate. 相似文献
15.
时域径向基函数网络诊断方法在往复泵故障诊断中的应用 总被引:4,自引:1,他引:4
往复机械是工程中广泛应用的一种机械设备 ,由于其动力学和运动学形态比旋转机械复杂 ,对其进行故障诊断存在较大难度 ,有效提取往复机械运动中非平稳时变信号中的故障特征和将故障特征准确分类是解决往复机械故障诊断问题的两个关键。本文利用时域数字特征分析方法完成故障特征信息提取 ;通过径向基神经网络对特征信息分类识别 ,实现故障的自动诊断。利用以上原理建立的油田往复塞泵故障监测与诊断系统 ,通过在大庆油田的实际应用表明 ,系统能够比较准确的识别往复柱塞泵多种常见故障 ,且具有较高的运算速度。 相似文献
16.
The first-order reliability method (FORM) is one of the most widely used structural reliability analysis techniques due to its simplicity and efficiency. However, direct using FORM seems disability to work well for complex problems, especially related to high-dimensional variables and computation intensive numerical models. To expand the applicability of the FORM for more practical engineering problems, a response surface (RS) approach based FORM is proposed for structural reliability analysis. The radial basis function (RBF) is employed to approximate the implicit limit-state functions combined with Latin Hypercube Sampling (LHS) strategy. To guarantee the numerical stability, the improved HL-RF (iHL-RF) algorithm is used to assess the reliability index and corresponding probability of failure based on the constructed RS model. The effectiveness of the proposed method is demonstrated through five numerical examples. 相似文献
17.
通过对Job-shop问题分析,在逐步添加约束到有向图模型来获取可行调度方案基础上,提出一种具备自动学习功能智能算法.设计了可互换工序对4种选取函数,并以此作为网络输入构建了基于RBF的神经网络以实现对可互换工序对选取.利用最小均方算法对网络权重进行训练,经过对更新过的样本进行再学习后,网络选取可互换工序对的准确度得以提高,使算法具备自学习能力.数值仿真结果表明所提算法对于大规模Job-shop问题求解存在较好效果,具较好的应用价值. 相似文献
18.
Parkinson’s disease is a neurogenerative disorder and it is difficult to diagnose as no therapies may slow down its progression. This paper contributes a novel analytic system for Parkinson’s Disease Prediction mechanism using Improved Radial Basis Function Neural Network (IRBFNN). Particle swarm optimization (PSO) with K-means is used to find the hidden neuron’s centers to improve the accuracy of IRBFNN. The performance of RBFNN is seriously affected by the centers of hidden neurons. Conventionally K-means was used to find the centers of hidden neurons. The problem of sensitiveness to the random initial centroid in K-means degrades the performance of RBFNN. Thus, a metaheuristic algorithm called PSO integrated with K-means alleviates initial random centroid and computes optimal centers for hidden neurons in IRBFNN. The IRBFNN uses Particle swarm optimization K-means to find the centers of hidden neurons and the PSO K-means was designed to evaluate the fitness measures such as Intracluster distance and Intercluster distance. Experimentation have been performed on three Parkinson’s datasets obtained from the UCI repository. The proposed IRBFNN is compared with other variations of RBFNN, conventional machine learning algorithms and other Parkinson’s Disease prediction algorithms. The proposed IRBFNN achieves an accuracy of 98.73%, 98.47% and 99.03% for three Parkinson’s datasets taken for experimentation. The experimental results show that IRBFNN maximizes the accuracy in predicting Parkinson’s disease with minimum root mean square error. 相似文献