首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An alkaline protease was purified to apparent homogeneity from culture supernatants of Bacillus sp. PS719, a novel alkaliphilic, thermophilic bacterium isolated from a thermal spring soil sample, by ammonium sulfate precipitation followed by DEAE-cellulose and alpha-casein agarose column chromatographies. The purified enzyme migrated as a single protein band of 42 kDa during both denaturing and nondenaturing gel electrophoresis, suggesting that it consists of a single polypeptide chain. Its isoelectric point was approximately 4.8. The protease exhibited maximum activity towards azocasein at pH 9.0 and at 75 degrees C. The enzyme activity was stimulated by Ca2+, but was inhibited in the presence of Fe2+ or Cu2+. The enzyme was stable in the pH range 8.0 to 10.0 and up to 80 degrees C in the absence of Ca2+. Since phenylmethylsulfonyl fluoride (PMSF) and 3,4-dichloroisocoumarin (DCI) in addition to N-alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK) completely inhibited the activity, this enzyme appears to be a trypsin-like serine protease. Among the various oligopeptidyl-p-nitroanilides tested, the protease showed a preference for cleavage at arginine residues on the carboxylic side of the scissile bond of the substrate, liberating p-nitroaniline from N-carbobenzoxy (CBZ)-L-arginine-p-nitroanilide with the K(m) and V(max) values of 0.6 mM and 1.0 micromol.min(-1).mg protein(-1), respectively.  相似文献   

2.
Sporobolomyces singularis can be used as a biocatalyst in galacto-oligosaccharide production. We isolated 2-deoxy-D-glucose-resistant mutants of S. singularis ATCC 24193 and recovered a mutant that showed 10-fold higher beta-galactosidase-like activity than the parent strain and which was insensitive to catabolite repression. Thereafter, the beta-galactosidase-like enzyme was purified from the mutant and revealed to be a glycoprotein with both beta-glucosidase- and beta-galactosidase-like activity, the Michaelis-Menten constants of which for o-nitrophenyl-beta-D-galactopyranoside and p-nitrophenyl-beta-D-glucopyranoside were 5.40 and 1.96 mM, respectively, and the maximum velocities were 3.07 and 2.30 micromol/min per mg of protein, respectively. Its molecular mass was estimated to be 73.9 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and 146 kDa by gel filtration, suggesting that it has a homodimeric structure. We sequenced the N-terminus and internal peptides of this protein and isolated both a cDNA and a gene with degenerate primers. The gene, named bg l A, has 18 introns and 19 exons and encodes a polypeptide of 594 amino acids. The Bg l A protein was approximately 35% identical and 50% similar to plant beta-glucosidases belonging to family 1 glycosyl hydrolases, but with a unique 110-amino-acid sequence at the N-terminus. The beta-galactosidase-like enzyme (i.e., Bg l A protein) in S. singularis is a beta-glucosidase with high transgalactosidase activity.  相似文献   

3.
The presence of Brettanomyces bruxellensis has been correlated with an increase of phenolic aromas in wine. The production of these aromas results from the metabolization of cinnamic acids, present in the wine, to their ethyl derivatives. Hence, the participation of two enzymes has been proposed: a p-coumarate decarboxylase (CD) and a vinylphenol reductase (VR). Both enzymes were purified and characterized from B. bruxellensis. In denaturing conditions, the CD enzyme had a molecular mass of 21 kDa, while in native conditions its mass was 41 kDa. The optimal activity was obtained at a temperature of 40 degrees C and a pH of 6.0. For p-coumaric acid, the K(m) value and V(max) were 1.22+/-0.08 mM and 98+/-0.15 micromol/min mg, respectively. The VR enzyme had a molecular mass of 37 kDa in SDS-PAGE, while in natural conditions its mass was 118 kDa. The K(m) value was >3.37+/-2.05 mM and its V(max) was 107.62+/-50.38 micromol/min mg for NADPH used as a cofactor. Both enzymatic activities were stable at pH 3.4, but in the presence of ethanol the CD activity decreased drastically while the VR activity was more stable. This is the first report that shows the presence of a CD and a VR enzyme in B. bruxellensis.  相似文献   

4.
The ammonia-oxidizing chemoautotrophic Nitrosomonas sp. strain K1 exhibited marked ribulose-1,5-bisphosphate carboxylase (RubisCO) activity. The RubisCO [EC 4.1.1.39] was purified as an electrophoretically homogeneous protein. The molecular mass of the enzyme was estimated to be about 460 kDa by gel filtration, and it consists of two subunits [large (L): 52.2 kDa; small (S): 13.3 kDa] as demonstrated by SDS-PAGE. This confirmed that the enzyme has an L(8)S(8) structure. The K(m) values of the enzyme for RuBP, NaHCO3, and Mg2+ were estimated to be 0.112, 0.415, and 1.063 mM, respectively. The optimum pH and temperature for its activity were approximately 7.0 and 45 degrees C. The enzyme was stable up to 45 degrees C and in a pH range from 7.0-9.0 (4 degrees C, 48 h). The enzyme activity was inhibited by Cu2+, Hg2+, N-ethylmaleimide, p-chloromercuribenzoate, and SDS (0.1 mM). The activity was also inhibited by ammonium sulfate at high concentrations (38-303 mM) but the stability of the enzyme showed no inhibition at the same ammonium sulfate concentrations. The N-terminal amino acid sequences of the large and small subunits are AIKTYQAGVKEYRQTYW QPDYVPL and AIQAYHLTKKYETFSYLPQM, respectively.  相似文献   

5.
Aspergillus niger, an isolate of soil contaminated with effluents from cotton ginning mill was grown in Czapek-Dox medium containing sawdust, Triton-X 100 and urea for production of an extracellular β-glucosidase. β-Glucosidase enzyme was purified (86-fold) from culture filtrate of A. niger by employing ammonium sulphate precipitation and gel filtration on sephadex G-75. The molecular mass of the purified enzyme was estimated to be 95 kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The enzyme had an optimal activity on p-nitrophenyl β-D-glucopyranoside at 50°C and pH 5.0. The Km and Vmax of the enzyme on p-nitrophenyl β-D-glucopyranoside at 50°C and pH 5 were 8.0 mM and 166 µmol/min/mg of protein, respectively. The enzyme could hydrolyze cellobiose and lactose but not sucrose. Heavy metals like Hg2+, Al3+, and Ag+ inhibited the activity, whereas Zn2+ and detergents such as Triton-X 100 and Tween-80 increased the activity at 0.01%. The enzyme activity increased in the presence of methanol and ethanol.  相似文献   

6.
We report that Aspergillus terreus LD-1 produces an extracellular ligninolytic enzyme, manganese peroxidase (MnP), that reacts under alkaline conditions. This MnP was purified 13.1-fold from the culture supernatant to elicit a single band upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of this MnP was estimated as either 43 kDa by SDS-PAGE or 44 kDa by gel permeation chromatography, suggesting a monomeric structure. The optimum pH and temperature of this MnP are 12.5 and 37 degrees C, respectively. This MnP is stable in the pH range 11.0 to 12.5 and also up to 40 degrees C. The K(m) values of this MnP for hydrogen peroxide, 2,6-dimethoxyphenol (2,6-DMP) and Mn2+ were 320 microM, 20 microM and 33 microM at pH 12.5, respectively. The activity of the MnP is completely inhibited by Hg2+, Pb2+, Ag+ and lactate. On the other hand, the MnP is activated by oxalate, maleate and fumarate. Maleate at 5 mM increased the MnP activity 5-fold. EDTA at 1 mM inhibited the MnP activity completely, but this inhibition was not observed in the presence of 1 mM Fe2+.  相似文献   

7.
An extra-cellular lipase produced by Bacillus licheniformis MTCC 6824 was purified to homogeneity by ammonium sulphate fractionation, ethanol/ether precipitation, dialysis, followed by anion-exchange chromatography on Amberlite IRA 410 (Cl form) and gel exclusion chromatography on Sephadex G 100 using Tris–HCl buffer (pH 8.0). The crude lipase extract had an activity of 41.7 LU/ml of culture medium when the bacterium was cultured for 48 h at 37 °C and pH 8.0 with nutrient broth supplemented with sardine oil as carbon source. The enzyme was purified 208-fold with 8.36% recovery and a specific activity of 520 LU/mg after gel exclusion chromatography. The pure enzyme is a monomeric protein and has an apparent molecular mass of 74.8 kDa. The lipase had a Vmax and Km of 0.64 mM/mg/min and 29 mM, respectively, with 4-nitro phenylpalmitate as a substrate, as calculated from the Lineweaver–Burk plot. The lipase exhibited optimum activity at 45 °C and pH 8.0, respectively. The enzyme had half-lives (T1/2) of 82 min at 45 °C, and 48 min at 55 °C. The catalytic activity was enhanced by Ca2+ (18%) and Mg2+ (12%) at 30 mM. The lipase was inhibited by Co2+, Cu2+, Zn2+, Fe2 even at low concentration (10 mM). EDTA, at 70 mM concentration, significantly inhibited the activity of lipase. Phenyl methyl sulfonyl fluoride (PMSF, 70 mM) completely inactivated the original lipase. A combination of Ca2+ and sorbitol induced a synergistic effect on the activity of lipase with a significantly high residual activity (100%), even after 45 min, as compared to 91.5% when incubated with Ca2+ alone. The lipase was found to be hydrolytically resistant toward triacylglycerols with more double bonds.  相似文献   

8.
Glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from coriander (Coriandrum sativum) leaves; the kinetic behavior and some properties of the enzyme were also investigated. The purification was done at 4C and involved two steps: ammonium sulfate fractionation, and DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 26.4% and had a specific activity of 1.826 U/mg protein. Optimum pH, stable pH, optimum temperature, molecular weight, KM and Vmax values for NADP+ and glucose 6-phosphate (G6-P) were also determined.
The overall purification was about 74-fold. SDS-PAGE of the purified enzyme showed a single band. Enzymatic activity was spectrophotometrically measured according to Beutler's method at 340 nm.
The molecular mass was estimated to be 74.4 kDa by SDS-PAGE and 73.2 kDa by Sephadex G-200 gel filtration column chromatography. The enzyme had an optimum pH at 8.5 and was stable at pH 8.0 in 0.1 M Tris-HCl buffer. The optimum temperature was at 30C. The KM values for NADP+ and G6-P were 0.026 mM and 0.116 mM, respectively. The Vmax values for these substrates were 0.035 EU/mL and 0.038 EU/mL, respectively.  相似文献   

9.
A filamentous fungus, Rhizopus sp. strain TN-96, was isolated from rhizosphere soil samples. An extracellular inulinase was purified from the culture filtrate of strain TN-96 grown on inulin by DEAE-Cellulofine A-500 and Sephacryl S-200 HP chromatographies. The enzyme was homogeneous as judged by SDS-polyacrylamide gel electrophoresis, with an apparent M(r) of 83 kDa. The purified enzyme had specific activities of 17 U/mg toward inulin (I) and 0.32 U/mg toward sucrose (S) (I/S ratio, 53). Inulinase activity was optimal at pH 5.5 and 40 degrees C. The inulinase exhibited an apparent K(m) value of 9.0 mM for inulin. The enzyme also hydrolyzed raffinose, but not bacterial levan.  相似文献   

10.
An alkaline serineprotease, capable of hydrolyzing Nalpha-benzoyl- dl arginine p-nitroanilide, was secreted by Fusarium oxysporum var. lini grown in the presence of gelatin as the sole nitrogen and carbon source. The protease was purified 65-fold to electrophoretic homogenity from the culture supernatant in a three-step procedure comprising QSepharose chromatography, affinity chromatography, and FPLC on a MonoQ column. SDS-PAGE analysis of the purified protein indicated an estimated molecular mass of 41 kDa. The protease had optimum activity at a reaction temperature of 45 degrees C and showed a rapid decrease of activity at 48 degrees C. The optimum pH was around 8.0. Characterization of the protease showed that Ca2+ and Mg2+ cations increased the activity, which was not inhibited by EDTA or 1,10-phenanthroline. The enzyme activity on Nalpha-benzoyl-DL arginine p-nitroanilide was inhibited by 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride, p-aminobenzamidine dihydrochloride, aprotinin, 3-4 dichloroisocoumarin, and N-tosyl-L-lysine chloromethyl ketone. The enzyme is also inhibited by substrate concentrations higher than 2.5 x 10(-4)M. The protease had a Michaelis-Menten constant of 0.16 mM and a V(max) of 0.60 mumol released product.min(-1).mg(-1) enzyme when assayed in a non-inhibiting substrate concentration. The activity on Nalpha-benzoyl- dl arginine p-nitroanilide was competitively inhibited by p-aminobenzamidine dihydrochoride. A K(i) value of 0.04 mM was obtained.  相似文献   

11.
We purified a carboxypeptidase (CPY) from the yeast of Kluyveromyces marxianus. This enzyme was purified 170 times from a soluble extract of 100000 x g. Purification consisted in a fractionated precipitation with ammonium sulfate and two chromatographic steps consisting of anion exchange chromatography and hydrophobic interactions chromatography. The native enzyme depicted a molecular mass of 67 kDa by gel filtration. This serine carboxypeptidase depicted an optimal pH of 8.5 and was stable at a pH ranging from 6.0 to 9.0, its optimal temperature was of 45 degrees C and was unstable at temperatures above 55 degrees C; Michaelis constant and Vmax for N-benzoyl-l-tyrosine-p-nitroanilide were of 29 microM and 612 microM/min mg of protein, respectively. The enzyme was strongly inhibited by phenylmethylsufonyl fluoride (PMSF) and, to a lesser degree, by trans-epoxysuccinyl-l-leucylamido-(4-guanidine)-butane. This study indicated that K. marxianus carboxypeptidase could be an alternative to other animal-source carboxypeptidases in the industry.  相似文献   

12.
Serratia marcescens isolated from raw milk was found to produce extracellular lipase. The growth of this organism could contribute to flavor defects in milk and dairy products. Serratia marcescens was streaked onto spirit blue agar medium, and lipolytic activity was detected after 6 h at 30 degrees C and after 12 h at 6 degrees C. The extracellular crude lipase was collected after inoculation of the organism into nutrient broth and then into skim milk. The crude lipase was purified to homogeneity by ion-exchange chromatography and gel filtration. The purified lipase had a final recovered activity of 45.42%. Its molecular mass was estimated by SDS-PAGE assay to be 52 kDa. The purified lipase was characterized; the optimum pH was likely between 8 and 9 and showed about 70% of its activity at pH 6.6. The enzyme was very stable at pH 8 and lost about 30% of its activity after holding for 24 h at 4 degrees C in buffer of pH 6.6. The optimum temperature was observed at 37 degrees C and exhibited high activity at 5 degrees C. The thermal inactivation of S. marcescens lipase was more obvious at 80 degrees C; it retained about 15% of its original activity at 80 degrees C and was completely inactivated after heating at 90 degrees C for 5 min. Under optimum conditions, activity of the enzyme was maximum after 6 min. The Michaelis-Menten constant was 1.35 mM on tributyrin. The enzyme was inhibited by a concentration more than 6.25mM. Purified lipase was not as heat-stable as other lipases from psychrotrophs, but it retained high activity at 5 degrees C. At pH 6.6, the pH of milk, purified lipase showed some activity and stability. Also, the organism demonstrated lipolytic activity at 6 degrees C after 12 h. Therefore, S. marcescens and its lipase were considered to cause flavor impairment during cold storage of milk and dairy products.  相似文献   

13.
A second aminopeptidase was purified from cell-free extracts of Lactobacillus delbrueckii subsp. bulgaricus B14 by ammonium sulphate precipitation and two steps of anion-exchange chromatography. After SDS polyacrylamide-gel electrophoresis in the presence of β-mercaptoethanol, one protein band was detected at 54 kDa. The same molecular mass was estimated by gel filtration. SDS polyacrylamide-gel electrophoresis in the absence of β-mercaptoethanol resulted in a single band at 220 kDa, indicating that the enzyme forms complexes of four molecules under non-reducing conditions. Activity was markedly increased by reducing and metal-chelating agents. Thiol-group inhibitors, such as iodoacetic acid, inhibited the enzyme strongly. In contrast to Mg2+ and Ca2+, which had slightly activating effects, other divalent cations reduced enzyme activity at a concentration of 1 mM. The aminopeptidase showed highest activity at 50°C and pH 6·5–7 and hydrolyzed a wide range of di- and tripeptides. The most suitable substrates were Leu-Gly, Leu-Gly-Gly, Ala-Ala-Ala, and Met-Gly-Gly. For Leu-Gly and Leu-Gly-Gly, Km-values of 1·81 mM and 2·17 mM and turnover numbers of 870 s−1 were calculated, with a maximal rate of hydrolysis (Vmax) of 4600 and 2780 μmol/min per mg of protein, respectively. The aminopeptidase did not cleave Lys-pNA, a substrate hydrolyzed by all type-‘N’ aminopeptidases from lactic acid bacteria with high velocities. It compared well, however, with pepC found in Lactococcus.  相似文献   

14.
ABSTRACT: An enzyme with α-L-rhamnosidase activity was purified to homogeneity from a culture filtrate of Aspergillus terreus after growth in a medium containing L-rhamnose as the sole carbon source. The biosynthesis of this enzyme was repressed by glucose. The enzyme had a molecular mass of 96 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an isoelectric point of 4.6 as determined by analytical isoelectric focusing. The pH and temperature optima for the enzyme were found to be 4.0 and 44 °C, respectively. Using p-nitrophenyl-α-L-rhamnopyranoside as a substrate, the enzyme exhibited Michaelis-Menten kinetics with KM and Vmax values of 0.17 mM and 84 U/mg, respectively. The enzyme was inhibited competitively by L-rhamnose (K1 2.5 mM). Divalent cations such as Ca2+ Mg2+ Zn2+ and Co2+ stimulated the a-L-rhamnosidase activity, whereas this was inhibited by Hg2+ and Cd2+. Ethanol (12% v/v) and glucose (21% w/v) decreased enzyme activity by approximately 20%, while this was not affected by SO2.  相似文献   

15.
A thermostable histamine oxidase (EC 1.4.3.-) was found in cells of Arthrobacter crystallopoietes KAIT-B-007 isolated from soil. The enzyme was purified about 715-fold over the cell free extracts with a yield of 55% by ammonium sulfate fractionation and various column chromatographies. The purified enzyme was homogeneous on polyacrylamide gel-electrophoresis (native-PAGE). When the enzyme was kept at 65 degrees C and 70 degrees C for 10 min, the activity was fully stable at 65 degrees C and decreased to 9% of the initial level at 70 degrees C. The enzyme was very thermostable. The optimum pH for histamine oxidase activity was found to be at 9.0, and the enzyme was stable over the pH range of 6 to 9. The purified enzyme showed a single protein band on SDS-PAGE and its molecular mass was estimated to be about 81 kDa. The enzyme showed potent activity toward histamine, whereas it was inactive toward putrescine, cadaverine, spermine, and spermidine. Histamine oxidase was inhibited by N,N-diethyldithiocarbamate (DDTC). The inactive enzyme was restored with Cu2+ to 65% of the initial activity, but Cu+ did not enhance the enzyme activity. It is suggested that Cu2+ is essential for expression of histamine oxidase activity. The enzyme was a copper-containing protein having one atom of copper per mol of the enzyme protein as a result of atomic absorption analysis. The N-terminal amino acid sequence of the purified enzyme was different from that of histamine oxidase from Arthrobacter globiformis IFO12137.  相似文献   

16.
Abstract: In this study, a β-glucosidase (PaBG1b) with high specific activity was purified from gut extracts of the wood-feeding cockroach Panesthia angustipennis spadica using Superdex 75 gel filtration chromatography and High-Trap phenyl hydrophobic chromatography. The protein was purified 14-fold to a single band identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis, with an apparent molecular mass of 56.7 kDa. The specific activity of the purified enzyme was 708 μmol/min/mg protein using cellobiose as substrate. To the best of our knowledge, this is the highest specific activity reported among β-glucosidases to date. The purified PaBG1b showed optimal activity at pH 5.0 and retained more than 65 % of the activity between pH 4.0 and 6.5. The activity was stable up to 50 °C for 30 min. Kinetic studies on cellobiose revealed that the Km was 5.3 mM, and the Vmax was 1,020 μmol/min/mg. The internal amino acid sequence of PaBG1b was analyzed, and two continuous sequences (a total of 39 amino acids) of the C-terminal region were elucidated. Based on these amino acid sequences, a full-length cDNA (1,552 bp) encoding 502 amino acids was isolated. The encoded protein showed high similarity to β-glucosidases from glycoside hydrolase family 1. Thus, the current study demonstrated the potential of PaBG1b for application in enzymatic biomass-conversion as a donor gene for heterologous recombination of cellulase-producing agents (fungi or bacteria) or an additive enzyme for cellulase products based on the high-performance of PaBG1b as a digestive enzyme in cockroaches.  相似文献   

17.
Diospyros lotus fruit polyphenol oxidase was purified using affinity chromatography, resulting in a 15-fold enrichment in specific activity. The purified enzyme, having 16.5 kDa molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, exhibited the highest activity toward 4-methylcatechol. Maximum diphenolase activity was reached at pH 7.0 and 60°C in the presence of 4-methylcatechol. Km and Vmax values were calculated as 3.8 mM and 1250 U/mg protein, respectively. Ascorbic acid was a promising inhibitor with an IC50 value of 0.121 µM. The activity of the purified enzyme was stimulated by Fe2+, Sr2+, Zn2+, and K+ and deeply inhibited by Hg2+, at 1 mM final concentration. Aqueous extract of Diospyros lotus L. fruit showed strong substantial urease and acetylcholinesterase inhibition, with IC50 values of 1.55 ± 0.05 and 16.75 ± 0.11 mg/mL, respectively.  相似文献   

18.
A 65 kDa intracellular lipase from Lactobacillus plantarum 2739 was purified to homogeneity (482-fold, specific activity of 251 μmol/mg per min) and characterized. The purification procedure included chromatography with Q-Sepharose, Sephacryl 200, Phenyl-Superose and Mono Q. The purified lipase was optimally active at pH 7.5 and 35C; it retained about 40% of the maximum activity at pH 5.0 and 15C. The enzyme was stable at 65C (D65C= 18.6 min) and was irreversibly inactivated at 75C for 2 min. On triglycerides, the highest activity was determined on tributyrin but trilaurin and tripalmitin were hydrolyzed also. The Km on tributyrin was 2.31 mM. β-Naphthyl esters of fatty acids from C2 to C12 were hydrolyzed with a preference for β-naphthyl butyrate. After lipolysis, the fatty acid profiles in β-monoacylglycerols of milk fat showed similarities among porcine pancreatic lipase, rennet paste and lipase from Lb. plantarum 2739, but the bacterial enzyme caused a greater hydrolysis of C10 and C12 fatty acids esterified at the Sn-2 position of glycerol. The lipase was strongly inhibited by 1 mM Nethylmaleimide and iodoacetic acid, by 10 mM Hg2+ and Ag+, and was moderately stimulated by Ca2+ and Mg2+.  相似文献   

19.
N-Acetylglucosaminyltransferase I (GnT-I), which catalyzes the transfer of an N-acetylglucosamine residue from UDP-N-acetylglucosamine to the alpha1,3-linked mannose on Man5GlcNAc2 (M5), is a critical enzyme for the synthesis of high-mannose-type to complex-type glycan structures in N-linked glycan processing. We developed a large-scale preparation system for recombinant human GnT-I (hGnT-I) using the maltose binding protein (MBP) fusion system to facilitate the chemoenzymatic route for complex-type N-linked glycan synthesis. MBP-fused GnT-I was purified by affinity chromatography on an amylose resin column. The relative activity of MBP-fused GnT-I toward high-mannose-type N-linked oligosaccharides was 100% for Man5GlcNAc2, 52% for Man3GlcNAc2, 17% for Man6GlcNAc2. MBP-fused GnT-I exhibited optimal activity at pH 6.5-9.5 and was more active between pH 6.5-9.0. The optimum temperature for MBP-fused GnT-I activity was 40 degrees C, but the enzyme was active between 0-70 degrees C. Mn2+ and Co2+ were critical for the enzyme activity, while Zn2+ and Ca2+ inhibited the activity. Kinetic analysis of the purified enzyme showed an apparent K(m) value of 0.483 mM and a V(max) of 101 nmol/mg/min for M5. Immobilization of MBP-fused GnT-I on the amylose resin led to an 80% yield of the high mannose-type-of oligosaccharide.  相似文献   

20.
研究了木薯块根中β-葡萄糖苷酶的分离纯化及酶学性质。以缓冲液从木薯块根中获得粗提酶液,粗酶酶活力为9.37 U/g木薯干重;再分别通过丙酮沉淀、离子交换层析和凝胶过滤层析进行纯化,β-葡萄糖苷酶酶活力为1.14 U/g木薯干重,经纯化β-葡萄糖苷酶纯度提高了14.62倍,总活力回收率为12.14%,电泳测得其分子量约70 kDa。该酶米氏常数Km为3.60 mmol/L,Vmax为12.36μmol/(min·mg protein);其最适pH为7.0,pH在6.0~8.0之间有较好的稳定性;在40℃以内有良好稳定性,在4℃存放30 d酶活力剩余81.78%。Mn2+和K+对酶有一定的促进作用,Al3+、Cu2+、Mg2+、Zn2+、Ca2+、Ba2+、Na+、尿素和SDS对酶没有显著影响(P>0.05),而Fe3+、F...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号