首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The removal of metsulfuron methyl (MeS)—a sulfonyl urea herbicide from contaminated water was investigated by advanced oxidation process (AOP) using Fenton method. The optimum dose of Fenton reagent (Fe2+/H2O2) was 10 mg/L Fe2+ and 60 mg/L H2O2 for an initial MeS concentration ([MeS]0) range of 0–80 mg/L. The Fenton process was effective under pH 3. The degradation efficiency of MeS decreased by more than 70% at pH > 3 (pH 4.5 and 7). The initial Fe2+ concentration ([Fe2+]0) in the Fenton reagent affected the degradation efficiency, rate and kinetics. The degradation of MeS at optimum dose of Fenton reagent was more than 95% for [MeS] 0 of 0–40 mg/L and the degradation time was less than 30 min. The determination of residual MeS concentration after Fenton oxidation by UV spectrophotometry was affected by the interferences from Fenton reagent. The estimation of residual MeS concentration after Fenton oxidation by high pressure/performance liquid chromatograph (HPLC) was interference free and represented the actual concentration of MeS and does not include the by-products of Fenton oxidation. The degradation kinetics of MeS was modelled by second order reactions involving 8 rate constants. The two reaction constants directly involving MeS were fitted using the experimental data and the remaining constants were selected from previously reported values. The model fit for MeS and the subsequent prediction of H2O2 were found to be within experimental error tolerances.  相似文献   

2.
The Fenton process was used to increase the biodegradability of refinery wastewater. Initially, effects of reaction time, H2O2/COD and H2O2/Fe2+ molar ratios were investigated and biodegradability of wastewater was determined in terms of the BOD5/COD ratio. Preliminary results showed that the Fenton process was able to improve wastewater biodegradability from 0.27 to 0.43. Subsequently, the process was optimized by using response surface methodology based on a five-level central composite design. Adequacy and significance of results were analyzed in analysis of variance. The quadratic model was found to be significant to give less than 0.05 probability of error. The model was fit with data based on insignificant of lack-of-fit test at values of 0.93. The high R2 and Adj.R2 (0.95 and 0.91) indicates satisfactory adjustment of quadratic model to experimental data. Based on optimized conditions, wastewater biodegradability improved to 0.44 via H2O2/COD and H2O2/Fe2+ molar ratios of 2.8 and 4 within 71 minutes reaction time.  相似文献   

3.
New heteronuclear (NH4)REIII[FeII(CN)6nH2O complexes (RE = La, Ce, Pr, Nd, Sm, Gd, Dy, Y, Er, Lu) were synthesized and their thermal decomposition products were investigated. The crystal structure of (NH4)RE[FeII(CN)6nH2O would be a hexagonal unit cell (space group: P63/m), which was the same as that of La[FeIII(CN)6]·5H2O. The hydration number n = 4 was estimated by TG results for all the RE complexes. The lattice constants depended on the ionic radius of the RE3+ ion for the heteronuclear complexes. The single phase of the perovskite type materials was directly obtained by decomposition of the heteronuclear complexes for RE = La, Pr, Nd, Sm, and Gd. A mixture of CeO2 and Fe2O3 was formed for RE = Ce because of its oxidation to Ce4+. In the case of RE = Dy, Y, Er, and Lu complexes, the perovskite type materials formed at higher temperature via. mixed oxides such as RE2O3 and RE4Fe5O13 due to the small RE3+ ionic radius.  相似文献   

4.
This study focused on the application of RSM on the Fenton process and the adsorption of vegetal carbon (VC) to obtain the optimal conditions for the minimization of the colored synthetic wastewater. Methyl orange (MO) with an azo dye was used as the model organic compound. Fenton processes were investigated to establish the optimal conditions. The Fe2+/H2O2 ratio was studied to establish the major MO degradation when 100 and 200 mg/L of MO were treated. For the adsorption process, to determine the optimal conditions, the principal variables studied were the vegetal carbon mass dosage, degradation time and dye concentration.  相似文献   

5.
Combination of electro-Fenton (EF) oxidation process with sonication for both the degradation of C.I. Reactive Black 5 (RB 5) and removal of chemical oxygen demand (COD) from synthetic textile wastewater was investigated under different operating conditions. Optimal conditions were found as the initial pH of 3, DC current of 0.25 A, H2O2 dosage of 800 mg/L and electrode distance of 2.5 cm for both EF and ultrasound assisted electro-Fenton (sono-EF) processes. However, the combination of EF with sonication was negligibly improved in terms of COD and color removals, compared to EF process.  相似文献   

6.
To improve the lattice structure of CeO2 and the transmission capacity of oxygen, Ce1  xFexO2(x  0.2)solid solutions were prepared by a hydrothermal method and used in oxidative dehydrogenation of ethylbenzene to styrene with CO2. Ce1  xFexO2 solid solutions were characterized by powder X-ray diffraction, Raman spectroscopy, N2-adsorption, H2 temperature-programmed reduction and H2–O2 titration. Results showed that approximately 20% of Fe3 + could dissolve into the CeO2 lattice while portions of Fe2O3 were highly dispersed on the surface of the Ce1  xFexO2 solid solution. The formation of Ce–Fe solid solutions could create more oxygen vacancies to promote the absorption and activation of CO2, which improves the activity of the catalyst and increased ethylbenzene conversion by as much as 13%.  相似文献   

7.
The effect of a range of operation variables such as pressure, low temperature and H2/CO molar feed ration the catalytic performance of 80%Co/20%Ni/30 wt% La2O3/1 wt% Cs catalyst was investigated. It was found that the optimum operating conditions is a H2/CO = 2/1 molar feed ratio at 260 °C temperature and 2 bar pressure. Reaction rate equations were derived on the basis of the Langmuir–Hinshelwood–Hougen–Watson (LHHW) type models for the Fischer–Tropsch reactions. The activation energy obtained was 59.69 kJ/mol for optimal kinetic model.  相似文献   

8.
This paper reports the effect of Fe2O3 doping on the densification and grain growth in yttria-stabilized zirconia (YSZ) during sintering at 1150 °C for 2 h. Fe2O3 doped 3 mol% YSZ (3YSZ) and 8 mol% YSZ (8YSZ) coatings were produced using electrophoretic deposition (EPD). For 0.5 mol% Fe2O3 doping, both 3YSZ and 8YSZ coatings during sintering at 1150 °C has similar densification. However, a significant grain growth occurred in 8YSZ during sintering, whereas grain size remains almost constant in 3YSZ. XRD results suggest that Fe2O3 addition substitutionally and interstitially dissolved into the lattice of 3YSZ and 8YSZ. In addition, colour of 3YSZ and 8YSZ changes differently with doping of Fe2O3. A Fe3+ ion interstitial diffusion mechanism is proposed to explain the densification and grain growth behaviour in the Fe2O3 doped 3YSZ and 8YSZ. A retard grain growth observed in the Fe2O3 doped 3YSZ is attributed to Fe3+ segregation at grain boundary.  相似文献   

9.
The Mannich reaction of 2-aminoethanol, 2-tert-butyl-4-methylphenol, and formaldehyde at the ratio sets of 1:2:2 provided a new ligand, N-(1-ethanol)-N,N-bis(3-tert-butyl-5-methyl-2-hydroxybenxyl)amine (H3L). In the presence of base, H3L reacted with FeCl3·6H2O to form a dinuclear Fe(III) complex [Fe2L2] 1. The value of μeff at room temperature (5.95 μB), is much less than the expected spin-only value (8.37 μB) of two high spin (hs) Fe3+ (S = 5/2) ions [μ = g[∑ ZS(S + 1)]1/2], indicating there were strong interactions between Fe3+ ions. The effective magnetic moment (μeff) decreased abruptly with cooling to a minimum value of 0.1 μB at 2 K. It was worth noting that Fe3+ ions of 1 exhibited thermally induced quartet ? doublet spin transitions, and these transitions were abrupt. The magnetic behaviors of 1 denoted the occurrence of intramolecular anti-ferromagnetic interactions. J (? 13.58 cm? 1) agrees with the result from Gorun–Lippard equation, ? J (cm? 1) = Aexp(BP(Å) = 12.9).  相似文献   

10.
The 3CaO·Al2O3–Fe2O3 (C3A–Fe2O3) system is important for the production of white clinker. In the present study this system was examined from the perspective of improving the sustainability of the production process. Microstructural evaluation was employed to explain the changes in color caused by variation of: iron content; temperature; type of atmosphere; and cooling conditions. It was found that color was more significantly affected by the iron content, temperature and type of atmosphere than by the type of cooling used. It was also observed that the utility of iron-rich raw materials could be maximized by understanding and enhancing the solubility of Fe2O3 in C3A. It was found that a 2 wt.% Fe2O3 solid solution was stable only under kiln open to atmospheric conditions and remained clear at temperatures up to 1370 °C. However, the same 2 wt.% Fe2O3 solid solution suffered a significant change in color when the temperature rose to 1400 °C. Mössbauer spectroscopy showed that the oxidation state of Fe was Fe3+, which did not change between 1370 and 1400 °C; however, a structural change in the C3A–Fe2O3 solid solution was detected as a result of the alteration of the thermal treatment. The distinction between the structures at these two temperatures was that at 1370 °C, all of the Fe3+ had a tetrahedral coordination, while at 1400 °C, 19 wt.% of the Fe3+ appeared in octahedral sites, a result that was corroborated by Rietveld analysis.  相似文献   

11.
《Catalysis communications》2003,4(10):525-529
In this work substituted magnetites Fe3  xMnxO4 (x=0.21, 0.26 and 0.53), Fe3  xCoxO4 (x=0;0.19;0.38;0.75) and Fe3  xNixO4 (x=0;0.10;0.28;0.54) have been used to promote two different reactions involving H2O2: (i) the oxidation of organic molecules namely phenol, hydroquinone and methylene blue dye in aqueous medium and (ii) the peroxide decomposition to O2. The presence of Co or Mn in the magnetite structure strongly increased the rate of H2O2 decomposition and the oxidation of the organic molecules whereas the presence of Ni inhibited both reactions. Kinetic data and CEMS Mössbauer spectroscopy suggest that the H2O2 decomposition and the organic oxidation are competitive reactions involving oxidizing species generated by surface M2+ (M=Fe, Co or Mn).  相似文献   

12.
In the current work removal of p-nitrophenol has been investigated using hydrodynamic cavitation, either operated individually or in combination with H2O2 and conventional Fenton process. In hydrodynamic cavitation, two different cavitating devices viz. orifice plate and venturi have been used. Effect of different operating parameters such as initial concentration (5 g/l and 10 g/l), inlet pressure (over a range 5.7–42.6 psi) and pH (over a range 2–8) on the extent of removal has been investigated. In conventional Fenton process two loadings of FeSO4, 0.5 g/l and 1 g/l were investigated and three ratios of FeSO4:H2O2 viz. 1:5, 1:7.5 and 1:10 were used. Removal observed with venturi was higher than with orifice plate in combination with Fenton chemistry. For 5 g/l initial concentration of p-nitrophenol, maximum removal of 63.2% was observed whereas for 10 g/l solution it was 56.2%.  相似文献   

13.
《Ceramics International》2017,43(17):14807-14812
Praseodymium substituted nano-crystalline Li-Ni spinel ferrites with different Pr3+ contents were synthesized by micro-emulsion method. X-ray diffraction (XRD), scanning electron spectroscopy (SEM) and vibrating sample magnetometery (VSM) techniques were employed to study the impact of substitution of the Pr3+ on the structure, surface morphology and magnetic parameters. XRD confirmed the formation of the single phase spinel ferrites of all compositions of LiNi0.5PrxFe2−xO4 nanocrystallites. The crystallite size determined from XRD data by Scherrer formula was calculated in range from 40 nm to 70 nm. However the nanoparticles size estimated by SEM was found 35–115 nm. The room temperature VSM measurements were carried out in the applied field range from “−10,000 Oe” to “10000” Oe. Saturation magnetization (MS) (41 emu/g) and coercivity (HC) values (156.9 Oe) of LiNi0.5Fe2O4 were improved by the addition of rare earth Pr3+ cations. The value of Hc is low, which is a strong indication of soft ferrites. The synthesized LiNi0.5PrxFe2−xO4 ferrites may be utilized for low core losses on transformers.  相似文献   

14.
《Journal of Catalysis》2005,229(2):470-479
Michael reaction of β-ketoesters with vinylketones at room temperature under solvent-free condition is investigated with various Fe3+ catalysts, including FeCl3  6H2O supported on various supports (Fe–mica, Fe–mont, Fe–SiO2, Fe–Al2O3, Fe–NaY) and homogeneous catalysts, FeCl3  6H2O and Fe(NO3)3  9H2O. Fe3+-exchanged fluorotetrasilicic mica (Fe–mica) shows highest activity. Fe–mica exhibits almost quantitative yields of Michael adducts, high turnover numbers (TON = 1000), and a low level of Fe leaching. After simple work-up procedures, Fe–mica can be recycled without a loss in activity. The relationship between catalytic activity and the catalyst structure determined by XRD, UV–vis, and Fe K-edge XANES/EXAFS is discussed in terms of the effect of clay support on the structure and reactivity of Fe3+ species. The Fe3+ cation, highly dispersed in the interlayer of clay (mica or mont) or on SiO2, is more active than the cluster-like Fe3+ oxide or hydroxide species in Fe–NaY and Fe–Al2O3. UV–vis and XAFS results for the catalysts treated with reactants suggest that, during the reaction, the FeCl2(O)4 octahedral species in FeCl3  6H2O or those on Fe–SiO2 are converted to the β-diketonato complexes with two β-diketonato ligands, whereas in Fe–mica β-diketonato complexes with one β-diketonato ligand are formed. The formation of β-diketonato complexes results in a slight lowering of the Fe oxidation number from 3+, probably as a result of the electron donation from the β-diketonato ligand to Fe3+ as a Lewis acid site. The lower numbers of β-diketonato ligand coordinated with Fe3+ in Fe–mica should result in a larger coordination strength for β-diketonato ligand than that in Fe–SiO2, which was confirmed by acetylacetone-TPD. Thus, the central carbon atom of the β-diketonato ligand in Fe–mica is more reactive toward nucleophilic attack by the coordinated enone, leading to higher activity for the Michael reaction.  相似文献   

15.
《Ceramics International》2017,43(18):16474-16481
Spinel ferrite (Ni, Cu, Co)Fe2O4 was synthesized from the low nickel matte by using a co-precipitation-calcination method for the first time. The influences of the added amount of NiCl2·6H2O, calcination temperature and time on the structure and magnetic properties of the as-prepared ferrites were studied in detail by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Raman spectroscopy, and Vibrating sample magnetometer (VSM). It is indicated that pure (Ni, Cu, Co)Fe2O4 with cubic phase could be obtained under the experimental conditions (NiCl2·6H2O added amount of 3.0: 100 g mL−1, calcination temperature from 800 to 1000 °C and calcination time from 1 to 3 h). With increasing calcination temperature and time, saturation magnetization (MS) of the synthesized (Ni, Cu, Co)Fe2O4 increased and the coercivity (HC) decreased. Under the optimum conditions (i.e. NiCl2·6H2O added amount of 3.0: 100 g mL−1, 1000 °C, 3 h), the MS and HC values of the product were approximately 46.1 emu g−1 and 51.0 Oe, respectively, which were competitive to those of other nickel ferrites synthesized from pure chemical reagents. This method explores a novel pathway for efficient and comprehensive utilization of the low nickel matte.  相似文献   

16.
Ni-doped Fe2O3 thin films which were active photoanodes for water splitting were prepared by electrodeposition. By adjusting Ni molar ratios (Ni/(Ni + Fe)) in the electrolyte, Fe2O3 thin films with various compositions of Ni could be tuned. The films were characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, atomic absorption spectrophotometer, and UV–vis spectroscopy. The highest photo-response obtained from Fe2O3 doped with 2.08 mol.% Ni is 1.5 mA/cm2 at 0.65 V vs. Ag/AgCl in 1.0 M NaOH solution. The high performance is attributed to the improvement of charge transport properties and retardation of the charge recombination resulting from the dopants in the lattice. The optical absorption spectra of the films reveal that the bandgaps of the Ni-doped Fe2O3 films are approximately 1.9–2.2 eV for all samples regardless of their doping level. XPS shows that the concentration of Ni is much higher on the surface than that in bulk.  相似文献   

17.
Cell immobilization techniques were adopted to bio-hydrogen production using immobilized anaerobic sludge as the seed culture. Palm oil mill effluent (POME) was used as the substrate carbon source. It was found that with a POME concentration of 20 g COD/l in the feed, the suspended-cell containing reactor was able to produce hydrogen at an optimal rate of 0.348 l H2/(l POME h) at HRT 6 h. However, the immobilized-cell containing reactor exhibited a better hydrogen production rate of 0.589 l H2/(l POME h), which occurred at HRT 2 h. When the immobilized-cell containing reactor was scaled up to 5 l, the hydrogen production rate was 0.500–0.588 l H2/(l POME h) for HRT 2–10 h, but after a thermal treatment (60 °C, 1 h) the rate increase to 0.632 l H2/(l POME h) at HRT 2 h. The main soluble metabolites were butyric acid and acetic acid, followed by propionic acid and ethanol.  相似文献   

18.
Three types of nanostructured systems: xNbO·(1?x)α-Fe2O3, xNbO2·(1?x)α-Fe2O3, and xNb2O5·(1?x)α-Fe2O3 were synthesized by ball milling at different molar concentrations (x=0.1, 0.3, 0.5, and 0.7). The effect of Nb valence and milling time on mechanochemical activation of these systems were studied by X-ray diffraction and the Mössbauer spectroscopy measurements. In general, Nb-substituted hematite was obtained at lower molar concentrations for all Nb oxides. For the NbO–Fe2O3 system the favorable substitution of Fe2+ for Nb2+ in the octahedral sites in the NbO lattice was observed after 12 h milling for x=0.7. In the case of the NbO2–Fe2O3 and Nb2O5–Fe2O3 systems a formation of orthorhombic FeNbO4 compound was observed, in which Fe3+ cations were detected. For the highest concentration of NbO2 (x=0.7) iron was completely incorporated into the FeNbO4 phase after 12 h milling. The molar concentrations of x=0.3 and 0.5 were the most favorable for the formation of ternary FeNbO4 compound in the Nb2O5–Fe2O3 system. Influence of ball milling on thermal behavior of the powders was investigated by simultaneous DSC–TG measurements up to 800 °C.  相似文献   

19.
A novel polyoxotungstate cluster (H2en)2.5H9[Fe6Ge3W24O94(H2O)2] · 14H2O (1) (en = ethylenediamine) has been hydrothermally synthesized and structurally characterized by IR, TGA and single-crystal X-ray diffraction. The polyoxoanion skeleton of 1 is composed of two tri-FeIII substituted B-α-(Fe3GeW9O40) Keggin units connected by an unique hexavacant GeW6O26 Keggin fragment, leading to the first Fe(III)-containing banana-shaped tungstogermanate. Magnetic measurements of 1 reveal that the exchange interactions within the trimetal clusters are antiferromagnetic.  相似文献   

20.
CuAl1?xFexO2 (x = 0, 0.1, and 0.2) thermoelectric ceramics produced by a reaction-sintering process were investigated. Pure CuAlO2 and CuAl0.9Fe0.1O2 were obtained. Minor CuAl2O4 phase formed in CuAl0.8Fe0.2O2. Addition of 10 mol% Fe lowered the sintering temperature obviously and enhanced the grain growth. At x = 0.1, electrical conductivity = 3.143 Ω?1 cm?1, Seebeck coefficient = 418 μV K?1, and power factor = 5.49 × 10?5 W m?1 K?2 at 600 °C were obtained. The reaction-sintering process is simple and effective in preparing CuAlO2 and CuAl0.9Fe0.1O2 thermoelectric ceramics for applications at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号