首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y. Suzuki  S. Narahashi  T. Nojima 《低温学》2008,48(11-12):521-526
This paper presents experimental results of a 2-GHz band gallium nitride high electron mobility transistor (GaN HEMT) amplifier cryogenically-cooled to 60 K as a part of the cryogenic receiver front end (CRFE) for mobile base station receivers. At a temperature of 60 K, the GaN HEMT amplifier attains the maximum power added efficiency of 62%, the saturation output power of 35 dBm, the gain of 26 dB, and the noise figure of 2.6 dB when operating at class-AB biasing. The results reported herein are the first on the performance of a cryogenically-cooled GaN HEMT amplifier aiming at use in a 2-GHz band CRFE.  相似文献   

2.
Thermooptical and magnetooptical properties of novel magnetoactive crystal terbium–scandium aluminum garnet were investigated at temperature range 80–300 K. It is shown that Verdet constant increases inversely proportional to temperature, and thermally induced depolarization, and the optical power of the thermal lens is reduced significantly with cooling from 290 K to 80 K. According to estimates, TSAG crystals in [1 1 1] orientation allow to create a cryogenic Faraday isolator provides a degree of isolation of 30 dB with the laser power exceeds ∼6 kW, it is estimated that the transition to the [0 0 1] orientation allows to provide degree of isolation of 30 dB at a laser power higher than 400 kW.  相似文献   

3.
P. Neilinger  M. Trgala  M. Grajcar 《低温学》2012,52(7-9):362-365
A simple design of one stage, low power cryogenic amplifier at 2.2–3 GHz range is presented. The design was numerically simulated by freely available microwave library SuperMix. The amplifier constructed according to the numerically optimized design was measured in cryogen-free refrigerator. The measured noise temperature TN  6 K and gain G  15.5 dB are in good agreement with numerical simulations.  相似文献   

4.
A single-stage high frequency multi-bypass coaxial pulse tube cryocooler (PTC) has been developed for physical experiments. The performance characteristics are presented. At present, the cooler has reached the lowest temperature of 18.6 K with an electric input power of 268 W, which is the reported lowest temperature for single-stage high frequency PTC. The cooler typically provides 0.2 W at 20.6 K and 0.5 W at 24.1 K with the input power of 260 W at 300 K ambient temperature. The cooperation phase adjustment method of multi-bypass and double-inlet shows its advantages in experiments, they might be the best way to get temperature below 20 K for single-stage high frequency PTC. The temperature stability of the developed PTC is also observed.  相似文献   

5.
A Stirling pulse tube cryocooler (SPTC) operating at the liquid-helium temperatures represents an excellent prospect for satisfying the requirements of space applications because of its compactness, high efficiency and reliability. However, the working mechanism of a 4 K SPTC is more complicated than that of the Gifford McMahon (GM) PTC that operates at the relatively low frequency of 1–2 Hz, and has not yet been well understood. In this study, the primary operating parameters, including frequency, charge pressure, input power and precooling temperature, are systematically investigated in a home-developed separate three-stage SPTC. The investigation demonstrates that the frequency and precooling temperature are closely coupled via phase shift. In order to improve the cooling capacity it is important to lower the frequency and the precooling temperature simultaneously. In contrast to the behavior predicted by previous studies, the pressure dependence of the gas properties results in an optimized pressure that decreases significantly as the temperature is lowered. The third stage reaches a lowest temperature of 4.97 K at 29.9 Hz and 0.91 MPa. A cooling power of 25 mW is measured at 6.0 K. The precooling temperature is 23.7 K and the input power is 100 W.  相似文献   

6.
Luwei Yang 《低温学》2008,48(11-12):492-496
Multi-stage Stirling-type pulse tube cryocoolers with high frequency (30–60 Hz) are one important direction in recent years. A two-stage Stirling-type pulse tube cryocooler with thermally coupled stages has been designed and established two years ago and some results have been published. In order to study the effect of first stage precooling temperature, related characteristics on performance are experimentally investigated. It shows that at high input power, when the precooling temperature is lower than 110 K, its effect on second stage temperature is quite small. There is also the evident effect of precooling temperature on pulse tube temperature distribution; this is for the first time that author notice the phenomenon. The mean working pressure is investigated and the 12.8 K lowest temperature with 500 W input power and 1.22 MPa average pressure have been gained, this is the lowest reported temperature for high frequency two-stage PTCS. Simulation has reflected upper mentioned typical features in experiments.  相似文献   

7.
To realize a multipixel camera for astronomical observation, we developed cryogenic multi-channel readout systems using gallium arsenide junction field-effect transistor (GaAs JFET) integrated circuits (ICs). Based on our experience with these cryogenic ICs, we designed, manufactured, and demonstrated operational amplifiers requiring four power supplies and two voltage sources. The amplifiers operate at 4.2 K with an open-loop gain of 2000. The gain–bandwidth product can expect 400 kHz at a power dissipation of 6 μW. In performance evaluations, the input-referred voltage noise was 4 μVrms/Hz0.5 at 1 Hz and 30 nVrms/Hz0.5 at 10 kHz, respectively. The noise power spectrum density was of type 1/f and extended to 10 kHz.  相似文献   

8.
Haizheng Dang 《低温学》2012,52(4-6):205-211
A high-capacity single-stage coaxial pulse tube cryocooler operating at around 60 K has been developed to provide the appropriate cooling for the next-generation very-large-scale long wave infrared focal plane arrays under development. The application background and cooler design process are described, and the performance characteristics are presented. At present, the cooler typically provides 4.06 W at 60 K with the input power of 180 W at 300 K reject temperature. 4.72 W can also be achieved when the input power increases to 200 W, and over 9.4% of Carnot efficiency at 60 K has been realized. The larger pulse tube diameter of 14.2 mm is used and the evident orientation sensitivity is observed in the range of 55–65 Hz. The experiments also observe the obvious reject temperature dependence.  相似文献   

9.
A new facility for the measurement of AC loss in superconductors at high dB/dt has been developed. The test device has a spinning rotor consisting of permanent magnets arranged in a Halbach array; the sample, positioned outside of this, is exposed to a time varying AC field with a peak radial field of 0.566 T. At a rotor speed of 3600 RPM the frequency of the AC field is 240 Hz, the radial dB/dt is 543 T/s and the tangential dB/dt is 249 T/s. Loss is measured using nitrogen boiloff from a double wall calorimeter feeding a gas flow meter. The system is calibrated using power from a known resistor. YBCO tape losses were measured in the new device and compared to the results from a solenoidal magnet AC loss system measurement of the same samples (in this latter case measurements were limited to a field of amplitude 0.1 T and a dB/dt of 100 T/s). Solenoidal magnet system AC loss measurements taken on a YBCO sample agreed with the Brandt loss expression associated with a 0–0.1 T Ic of 128 A. Subsequently, losses for two more YBCO tapes nominally identical to the first were individually measured in this spinning magnet calorimeter (SMC) machine with a Bmax of 0.566 T and dB/dt of up to 272 T/s. The losses, compared to a simplified version of the Brandt expression, were consistent with the average Ic expected for the tape in the 0–0.5 T range at 77 K. The eddy current contribution was consistent with a 77 K residual resistance ratio, RR, of 4.0. The SMC results for these samples agreed to within 5%. Good agreement was also obtained between the results of the SMC AC loss measurement and the solenoidal magnet AC loss measurement on the same samples.  相似文献   

10.
We report on the buried channel waveguide laser at 1065 nm in Nd:KGW waveguides fabricated by femtosecond laser writing with dual-line approach. A relatively high scanning speed of 0.5 mm/s enables acceptable propagation loss less than 2 dB/cm. The fluorescence emission spectra of Nd3+ ions measured shows that the fluorescence properties were well preserved in the waveguide region. A stable continuous wave laser at 1065 nm has been obtained at room temperature in the buried channel waveguides by optical pumping at 808 nm. A maximum output power of 33 mW and a slope efficiency of 52.3% were achieved in the Nd:KGW waveguide laser system.  相似文献   

11.
An Er/Yb co-doped fiber/Raman hybrid amplifier (HA) is proposed and studied theoretically and analytically to improve the gain and noise figure of optical amplifiers. The calculations are performed under a uniform dopant and steady-state conditions. The initial energy transfer efficiency for Er/Yb co-doped fiber amplifier (EYDFA) is introduced, while the amplified spontaneous emission (ASE) is neglected. The glass fiber used for both Er/Yb and Raman amplifiers is phosphate. Different pump powers are used for both EYDFA and RA with 1 μW input signal power, 1 m length of Er/Yb amplifier and 25 km length of Raman amplifier (RA). The proposed model is validated for Er/Yb co-doped amplifier and Raman amplifier separately by comparing the calculating results with the experimental data. A high gain and low noise figure at 200 mW Raman pump power and 500 mW Er/Yb pump power are obtained for the proposed HA as compared with the experimental results of EYDFA, Raman amplifier and the EDFA/Raman hybrid amplifier.  相似文献   

12.
A novel ultra-bandwidth polarization splitter based on soft glass dual-core photonic crystal fiber (DC-PCF) is designed in this paper, which is analyzed through the finite element method (FEM). The coupling characteristics of the designed DC-PCF can be enhanced by a high refractive index As2S3 core. Numerical results show the ultra-bandwidths of the x- and y-polarization modes can reach to 86 nm and 60 nm as the extinction ratios better than −20 dB and −30 dB at the vicinity of the wavelength of 1.31 μm. The length of the designed soft glass DC-PCF is 52.29 mm and the extinction ratios of the x- and y-polarization modes are −85.57 dB and −56.81 dB at the wavelength of 1.31 μm, respectively. In addition, the designed splitter has a tolerance of ±10 nm in its all structure parameters, which make the design not sensitive to the perturbation during the fabrication process.  相似文献   

13.
The development of a high cooling power and high efficiency 4.2 K two stage G-M cryocooler is critically important given its broad applications in low temperature superconductors, MRI, infrared detector and cryogenic electronics. A high efficiency 1.5 W/4.2 K pneumatic-drive G-M cryocooler has recently been designed and developed by ARS. The effect of expansion volume rate and operation conditions on the cooling performance has been experimentally investigated. A typical cooling performance of 1.5 W/4.2 K has been achieved, and the minimum temperature of the second stage is 2.46 K. The steady input power of the compressor at 60 Hz is 6.8 kW, while the operation speed of the rotary valve is 30 rpm. A maximum cooling power of 1.75 W/4.2 K has been obtained in test runs.  相似文献   

14.
During the last 10 years, there has been considerable interest in the development of conformal load-bearing antenna structure (CLAS) for communication and aerospace applications. CLAS combines the antenna into a composite structure such that it can carry the designed load while functioning as an antenna. In this paper, a 3D integrated microstrip antenna (3DIMA) was designed and fabricated. The input return loss and radiation pattern of the antennas were simulated using a computer aided design tool (HFSS) and also measured experimentally. The swept input return loss curve in the range of 1–2 GHz of the 3DIMA showed a return loss of ?13.15 dB at the resonant frequency of 1.872 GHz with a voltage standing wave ratio (VSWR) of 1.56; the radiation pattern has a maximum at 180° and agrees well with the simulation results, indicating that 3DIMA can be an effective approach for a CLAS.  相似文献   

15.
Ti3SiC2 filler has been introduced into SiCf/SiC composites by precursor infiltration and pyrolysis (PIP) process to optimize the dielectric properties for electromagnetic interference (EMI) shielding applications in the temperatures of 25–600 °C at 8.2–12.4 GHz. Results indicate that the flexural strength of SiCf/SiC composites is improved from 217 MPa to 295 MPa after incorporating the filler. Both the complex permittivity and tan δ of the composites show obvious temperature-dependent behavior and increase with the increasing temperatures. The absorption, reflection and total shielding effectiveness of the composites with Ti3SiC2 filler are enhanced from 13 dB, 7 dB and 20 dB to 24 dB, 21 dB and 45 dB respectively with the temperatures increase from 25 °C to 600 °C. The mechanisms for the corresponding enhancements are also proposed. The superior absorption shielding effectiveness is the dominant EMI shielding mechanism. The optimized EMI shielding properties suggest their potentials for the future shielding applications at temperatures from 25 °C to 600 °C.  相似文献   

16.
The two-stage Stirling-type pulse tube cryocooler (SPTC) has advantages in simultaneously providing the cooling powers at two different temperatures, and the capacity in distributing these cooling capacities between the stages is significant to its practical applications. In this paper, a theoretical model of the thermally-coupled two-stage SPTC without external precooling is established based on the electric circuit analogy with considering real gas effects, and the simulations of both the cooling performances and PV power distribution between stages are conducted. The results indicate that the PV power is inversely proportional to the acoustic impedance of each stage, and the cooling capacity distribution is determined by the cold finger cooling efficiency and the PV power into each stage together. The design methods of the cold fingers to achieve both the desired PV power and the cooling capacity distribution between the stages are summarized. The two-stage SPTC is developed and tested based on the above theoretical investigations, and the experimental results show that it can simultaneously achieve 0.69 W at 30 K and 3.1 W at 85 K with an electric input power of 330 W and a reject temperature of 300 K. The consistency between the simulated and the experimental results is observed and the theoretical investigations are experimentally verified.  相似文献   

17.
We report, for the first time to our knowledge, experimental results on pedestal waveguides produced with Yb3+/Er3+ codoped Bi2O3–WO3–TeO2 thin films deposited by RF Sputtering for photonic applications. Thin films were deposited using Ar/O2 plasma at 5 mTorr pressure and RF power of 40 W on substrates of silicon wafers. The definition of the pedestal waveguide structure was made using conventional optical lithography followed by plasma etching. Propagation losses around 2.0 dB/cm and 2.5 dB/cm were obtained at 633 and 1050 nm, respectively, for waveguides in the 20–100 μm width range. Single-mode propagation was measured for waveguides width up to 10 μm and 12 μm, at 633 nm and 1050 nm, respectively; for larger waveguides widths multi-mode propagation was obtained. Internal gain of 5.6 dB at 1530 nm, under 980 nm excitation, was measured for 1.5 cm waveguide length (∼3.7 dB/cm). The present results show the possibility of using Yb3+/Er3+ codoped Bi2O3–WO3–TeO2 pedestal waveguide for optical amplifiers.  相似文献   

18.
A single-stage 10 W/90 K coaxial pulse tube cryocooler has been developed for space-borne optics cooling. The design considerations are described, and the optimizations on the double-segmented inertance tubes are presented. The preliminary engineering model (EM) of the cooler has been worked out, which typically provides the cooling of 10 W at 90 K with the input power of 175.6 W at 310 K reject temperature, and achieves around 14% of Carnot efficiency at 90 K. The reject temperature dependence experiments on the EM show a smaller slope of 10.2 W/10 K and indicate a good adaptability to the reject temperature range from 290 K to 333 K.  相似文献   

19.
We report the performance of a helium circulation system (HCS) for a magnetoencephalography (MEG) that re-liquefies all the evaporating helium gas using two 1.5 W GM cryocoolers operating at 4.2 K. The MEG with the HCS was used to measure human brain responses for over one and a half years without any noise problems. The noise level is below 10 fT/Hz1/2 for 2–40 Hz, below 30 fT/Hz1/2 at 1 Hz, and 200 fT/Hz1/2 at 50 Hz, which is the power supply frequency. As the amount of liquid helium used decreases less than one percent, the maintenance cost of the MEG becomes less than one-tenth of the previous cost.  相似文献   

20.
Haizheng Dang 《低温学》2012,52(4-6):216-220
Several 40 K single-stage coaxial high frequency pulse tube cryocoolers (PTCs) have been developed to provide reliable and low-noise cooling for GaAs/AlGaAs Quantum-Well infrared photodetectors (QWIPs). The inertance tubes together with the gas reservoir become the only phase shifter to guarantee the required long-term stability. The mixed regenerator consisting of three segments has been developed to enhance the overall regenerator performance. At present, the cooler prototype has achieved a no-load temperature of 29.7 K and can typically provide 860 mW cooling at 40 K with 200 W electric input power rejecting at 300 K. The performance characteristics such as the temperature stability and ambient temperature adaptability are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号