首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
Intense strain, turbulence, heat transfer, and mixing with combustion products can affect premixed flames in practical combustion devices. These effects are systematically studied in turbulent premixed CH4/N2/O2 flames using a reactant versus product counterflow system and independently varying bulk strain rate, turbulent Reynolds number, equivalence ratio of the reactant mixture, and temperature of the stoichiometric counterflowing combustion products. The flow field and the turbulent flames are investigated using particle image velocimetry (PIV) measurements and laser-induced fluorescence (LIF) imaging of OH. The OH-LIF images are used to identify the interface between the counterflowing streams, referred to here as the gas mixing layer interface (GMLI). The flame response for different flow conditions is compared in terms of the probability of localized extinction along the GMLI, the turbulent flame brush thickness, and flame position relative to the GMLI, by using an OH-LIF-based progress variable. The probability of localized extinction at the GMLI increases as the separation between the turbulent flame brush and the GMLI decreases. Flame fronts in the vicinity of the GMLI are more likely to extinguish as a result of heat losses, dilution of the reaction zone by the product stream, and large local strain rates. A higher probability of localized extinction at the GMLI is induced by either a larger bulk strain rate or a slower flame speed. As the turbulent Reynolds number increases, the corresponding increase in turbulent flame brush thickness enhances the interactions of the flame fronts with the GMLI. Heat losses are substantially less significant for cases in which the turbulent flame brush is sufficiently separated from the GMLI. For flames in close proximity to the GMLI, the effects of the product stream on the flame front differ for lean and rich reactant mixtures. These disparities are attributed in part to differences in the ignitibility of the reactant mixtures by the hot product stream.  相似文献   

2.
To investigate the effect of equivalence ratio and turbulence intensity on the combustion characteristics of syngas/air mixtures, experiments involving premixed combustion of 70% H2/30% CO/air mixtures at various equivalence ratios and turbulence intensities were conducted in a turbulent combustion bomb at atmospheric temperature and pressure. The turbulent burning velocity and flame curvature were used to study turbulent combustion characteristics. The results show that the turbulent burning velocity grew nonlinearly as the equivalence ratio increased, while the normalized turbulent burning velocity tended to decrease. When the equivalence ratio was relatively low, the turbulence intensity was a greater determinant of the burning velocity. The normalized turbulent burning velocity increased as the turbulence intensity increased. Re and Da were found to be directly and inversely proportional to u’/uL, respectively. A linear relationship was observed between uT/uL and ln Re. As the turbulence intensity increased or equivalence ratio decreased, the wrinkle degree of the flame front increased, and the maximum and minimum values of flame front curvature increased and decreased, respectively. Meanwhile, the range of the flame front curvature increased gradually. The proportion of components with smaller absolute value of flame front curvature gradually decreases.  相似文献   

3.
Tubular flames are ideal for the study of stretch and curvature effects on flame structure, extinction, and instabilities. Tubular flames have uniform stretch and curvature and each parameter can be varied independently. Curvature strengthens or weakens preferential diffusion effects on the tubular flame and the strengthening or weakening is proportional to the ratio of the flame thickness to the flame radius. Premixed flames can be studied in the standard tubular burner where a single premixed gas stream flows radially inward to the cylindrical flame surface and products exit as opposed jets. Premixed, diffusion and partially premixed flames can be studied in the opposed tubular flame where opposed radial flows meet at a cylindrical stagnation surface and products exit as opposed jets. The tubular flame flow configurations can be mathematically reduced to a two-point boundary value solution along the single radial coordinate. Non-intrusive measurements of temperature and major species concentrations have been made with laser-induced Raman scattering in an optically accessible tubular burner for both premixed and diffusion flames. The laser measurements of the flame structure are in good agreement with numerical simulations of the tubular flame. Due to the strong enhancement of preferential diffusion effects in tubular flames, the theory-data comparison can be very sensitive to the molecular transport model and the chemical kinetic mechanism. The strengthening or weakening of the tubular flame with curvature can increase or decrease the extinction strain rate of tubular flames. For lean H2-air mixtures, the tubular flame can have an extinction strain rate many times higher than the corresponding opposed jet flame. More complex cellular tubular flames with highly curved flame cells surrounded by local extinction can be formed under both premixed and non-premixed conditions. In the hydrogen fueled premixed tubular flames, thermal-diffusive flame instabilities result in the formation of a uniform symmetric petal flames far from extinction. In opposed-flow tubular diffusion flames, thermal-diffusive flame instabilities result in cellular flames very close to extinction. Both of these flames are candidates for further study of flame curvature and extinction.  相似文献   

4.
In gas turbines, lean premixed combustion is executed in strongly turbulent flow fields and under high-pressure to allow large thermal loads within small-size combustors. Previous research on turbulent premixed flames has revealed the vital importance of flame-vortex interactions, but most of these investigations have been performed only at atmospheric pressure disregarding the large pressure dependency of the flame front dynamics. We report about spatially high-resolved laser-induced predissociation fluorescence imaging of OH (OH-LIPF) in premixed, high-pressure bluff-body stabilized methane/air flames. For each of the two measurement series with different equivalence ratio (φ = 0.7 and φ = 1.0), the planar flame topology at different pressures (0.1 to 1.1 MPa) but constant exit velocity was detected and stored for analysis. As the pressure was increased, the flame front contour of both equivalence ratios became strongly wrinkled with formation of highly curved flame front elements. For quantification of this phenomenon, the probability density function of flame curvature was evaluated with definition of the mean curvature radius as representative folding scale. To discuss different mechanisms of flame front disturbances according to their relevance, the flame curvature is compared with characteristic turbulence scales of the flow field and with the expected folding scale derived with Sivashinsky‘s formulation of linear flame instability theory. Significant changes become obvious especially if the pressure is increased up to 0.5 MPa. The mean curvature radius decreases distinctly and can be linked to the decreasing size of the Taylor length. Additionally, the formation of highly convoluted flame front elements is enforced by the increasing flame instability behavior. As the results show, the flame stoichiometry has a strong impact on the flame front topology at increasing pressures due to the differences of their flame dynamics.  相似文献   

5.
A novel Swiss-roll micro-combustor with double combustion chambers is proposed to improve flame stability and extend blow-off limits. This study is aimed to numerically investigate the effect of solid material (i.e., SiC, stainless steel and copper) on premixed CH4/air flame blow-off limit and reveal the flame stability mechanism. The simulated results show that this developed novel Swiss-roll micro-combustor not only can significantly anchor the flame owing to the flow recirculation behind the flame holders and the backward-facing steps, but also can further extend CH4 blow-off limits owing to heat recirculation in the long Swiss-roll preheating channels. The three solid material micro-combustors present the relatively slight difference in the recirculation-zone size but the remarkably difference in heat recirculation and heat loss. Good heat recirculation and low heat loss rate are the dominant reason that is responsible for the differences of the blow-off limits in this micro-combustor. The stainless steel micro-combustor achieves the highest blow-off limits while the copper micro-combustor achieves the lowest blow-off limit. These deep insights can give some useful information to design a similar Swiss-roll micro-combustor.  相似文献   

6.
Direct comparison of the turbulent burning velocity (obtained from flame speeds) to the flame perimeter ratio has been made in turbulent premixed flames propagating freely downward for propane/air mixtures at various equivalence ratios, with u′/SL of ranging from 1.4 to 5.3. The turbulent flame speed ranged from 2.6 to about 7 times the laminar flame speed at high turbulence intensities, while the flame perimeter ratio ranges from 1.4 to 3.3. In the current freely propagating flames, the global flame curvature can lead to an enhancement of the flame speed by a factor of up to 3.5. This global flame curvature is attributable to the wall heat loss in the current burner configuration, and flame brush thickness has been used as a measure of the global flame curvature. For flames involving coupling of the globally curved flame geometry with flow divergence or any flow non-uniformity, correcting for this geometrical effect requires a careful consideration of the flame topology and flow field. The difference between the observed flame speed and the 2-D flame perimeter ratio, after correcting for the global flame curvature effect, is attributed to the fact that the flame wrinkles in three-dimensions are associated with a larger flame surface area than that determined from the flame perimeter ratio data. This also points to a need to better understand the 3-D geometrical effects including the global flame curvature and the local flame wrinkle structure in turbulent premixed flames. The observed turbulent flame speed data for the most part follow the flame speed models of Bray and Damkohler, wherein the flame surface area increase is modeled as a function of turbulence and thermochemical properties. The above results, taken together, indicate that the fundamental assumption that the turbulent flame speed depends primarily on the increased flame surface area is valid. This concept can be used to estimate the turbulent flame speed within reasonable accuracy provided that the 3-D flame effects associated with the global flame curvature and local flame wrinkle structure are considered.Keywords: Turbulent premixed flames, Flame speed, Flame surface, Burning velocity  相似文献   

7.
Instantaneous flame front structure of syngas turbulent premixed flames including the local radius of curvature, the characteristic radius of curvature, the fractal inner cutoff scale and the local flame angle were derived from the experimental OH-PLIF images. The CO/H2/CO2/air flames as a model of syngas/air combustion were investigated at pressure of 0.5 MPa and compared to that of CH4/air flames. The convex and concave structures of the flame front were detected and statistical analysis including the PDF and ADF of the local radius of curvature and local flame angle were conducted. Results show that the flame front of turbulent premixed flames at high pressure is a wrinkled flame front with small scale convex and concave structures superimposed with large scale flame branches. The convex structures are much more frequent than the concave ones on flame front which reflects a general characteristic of the turbulent premixed flames at high pressure. The syngas flames possess much wrinkled flame front with much smaller fine cusps structure compared to that of CH4/air flames and the main difference is on the convex structure. The effect of turbulence on the general wrinkled scale of flame front is much weaker than that of the smallest wrinkled scale. The general wrinkled scale is mainly dominated by the turbulence vortex scale, while, the smallest wrinkled scale is strongly affected by the flame intrinsic instability. The effect of flame intrinsic instability on flame front of turbulent premixed flame is mainly on the formation of a large number of convex structure propagating to the unburned reactants and enlarge the effective contact surface between flame front and unburned reactants.  相似文献   

8.
The geometric alignment of turbulent strain-rate structures with premixed flames greatly influences the results of the turbulence–flame interaction. Here, the statistics and dynamics of this alignment are experimentally investigated in turbulent premixed Bunsen flames using high-repetition-rate stereoscopic particle image velocimetry. In all cases, the statistics showed that the most extensive principal strain-rate associated with the turbulence preferentially aligned such that it was more perpendicular than parallel to the flame surface normal direction. The mean turbulence–flame alignment differed between the flames, with the stronger flames (higher laminar flame speed) exhibiting stronger preferential alignment. Furthermore, the preferential alignment was greatest on the reactant side of the mean flame brush. To understand these differences, individual structures of fluid-dynamic strain-rate were tracked through time in a Lagrangian manner (i.e., by following the fluid elements). It was found that the flame surface affected the orientation of the turbulence structures, with the majority of structures rotating as they approached the flame such that their most extensive principal strain-rate was perpendicular to the flame normal. The maximum change in turbulent structure orientation was found to decrease with the strength of the structure, increase with the strength of the flame, and exhibit similar trends when the structure strength and flame strength were represented by a Karlovitz number. The mean change in orientation decreased from the unburnt to burnt side of the flame brush and appears to be influenced by the overall flame shape.  相似文献   

9.
Direct numerical simulations (DNS) are used to assess the effects of hydrogen substitution on lean premixed methane–air kernels during the early stages of growth in freely decaying turbulence. Two-dimensional simulations with a detailed 68-step reaction mechanism are carried out at equivalence ratios of ? = 0.53 and ? = 0.625, both with and without the substitution of a 30% fuel mole fraction of hydrogen. A comparative analysis is made into the changes in turbulent flame speeds, global stretch rates, and flame wrinkling at different turbulence intensities. The underlying causes of these changes are investigated through the distributions of the surface-conditioned displacement speed, strain rate and curvature. Direct comparison is made with the planar flame results of Hawkes and Chen [1] to assess the qualitative effects of kernel geometry in combination with a hydrogen-enriched fuel. It was found that the reduced effective fuel Lewis number and preferential diffusion of hydrogen, combined with the higher stretch rates and mean positive curvature of the kernel make the effects of hydrogen enrichment much more pronounced in kernels compared to planar flames.  相似文献   

10.
Computational flame diagnostics (CFLDs) are systematic tools to extract important information from simulated flames, particularly when detailed chemical kinetic mechanisms are involved. The results of CFLD can be employed for various purposes, e.g. to simplify detailed chemical kinetics for more efficient flame simulations, and to explain flame behaviors associated with complex chemical kinetics. In the present study, the utility of a recently developed method of chemical explosive mode analysis (CEMA) for CFLD will be demonstrated with a variety of flames for n-heptane including auto-ignition, ignition and extinction in steady state perfectly stirred reactors (PSRs) and laminar premixed flames. CEMA was further utilized for analyses and visualization of a direct numerical simulation (DNS) dataset for a 2-D n-heptane–air flame under homogeneous charge compression ignition (HCCI) conditions. CEMA was found to be a versatile method for systematic detection of many critical flame features including ignition, extinction, premixed flame fronts, and flame stabilization mechanisms. The effects of cool flame chemistry for n-heptane on ignition, extinction and flame stability were also investigated with CEMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号