首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The arc-heated high-temperature gas is rotationally and vibrationally excited, and partially dissociated and ionized. When such gas flows inside a nozzle, energy transfers from rotational and vibrational energy modes to translational energy mode, and, in addition, recombination reactions occur. These processes are in thermal and chemical nonequilibrium. The present computations treat arc-heated nonequilibrium nozzle flows using a six temperature model (translational, rotational, N2 vibrational, O2 vibrational, NO vibrational and electron temperatures), and nonequilibrium chemical reactions of air. From the calculated flow properties, emission spectra at the nozzle exit were re-constructed by using the code for computing spectra of high temperature air. On the other hand, measurements of N2+(1-) emission spectra were conducted at the nozzle exit in the 20 kW arc-heated wind tunnel. Vibrational and rotational temperatures of N2 were determined using a curve fitting method on N2+(1-) emission spectra, with  相似文献   

2.
Size and expansion ratio effects on the flowfield are investigated for micro converging-diverging nozzles. Numerical computations are conducted by using two dimensional augmented Burnett equations and Navier-Stokes equations that were derived from the Boltzmann equation. The Maxwell-Smoluchowski slip boundary condition is used for adiabatic walls, and Steger-Warming flux vector splitting scheme is applied to the convective inviscid flux terms. The results from the augmented Burnett equation are compared with Navier-Stokes and Direct Simulation Monte Carlo (DSMC) results. Then, nozzle-size analysis is conducted for between 2 µm and 100 µm throat width. Influence of the Knudsen number is investigated, and temperature and Mach number variations are presented. In addition, the influence of the expansion ratio is studied with three (1.7:1, 3.4:1, and 6.8:1) different configurations. The results are compared with each other and an experimental data in the literature.  相似文献   

3.
In the present study, computational work using the axisymmetric, compressible, Navier-Stokes equations is carried out to predict the discharge coefficient and critical pressure ratio of gas flow through a critical nozzle. The Reynolds number effects are investigated with several nozzles with different throat diameter. Diffuser angle is varied to investigate the effects on the discharge coefficient and critical pressure ratio. The computational results are compared with the previous experimental ones. It is known that the discharge coefficient and critical pressure ratio are given by functions of the Reynolds number and boundary layer integral properties. It is also found that diffuser angle affects the critical pressure ratio.  相似文献   

4.
We analyze numerical simulations of a second-order chemical reaction (Da = 1) in a fully developed turbulent plane channel flow at a low Reynolds number (Reτ = 180). The reactive plume is formed when a reactant A is released through a line source into the channel flow doped with reactant B. Two different inlet pre-mixing conditions and line source heights are considered. Direct Numerical Simulations (DNS) and Stochastic Fields (SF) methods have been used and compared for these different conditions. The results obtained using SF are sensitive to the particular value of the turbulent Schmidt number (ScT) selected to model the turbulent dispersion. It has been found that if a representative value of ScT extracted from DNS is used in the SF method, both DNS and SF, give similar results.  相似文献   

5.
6.
Detailed chemical kinetics is an integral component for predictive simulation of turbulent flames and is important for reliable prediction of flames and emissions. Major challenges of incorporation of detailed chemistry in flame simulations are induced by the large number of chemical species and the wide range of timescales involved in detailed kinetics. In this work, dynamic adaptive chemistry (DAC) and in situ adaptive tabulation (ISAT) for efficient chemistry calculations in calculating turbulent reactive flows with detailed chemistry are studied in iso-octane/air homogeneous charge compression ignition (HCCI) and methane/air combustion in a partially-stirred reactor (PaSR). Chemistry calculations are accelerated by DAC via expediting the integration of ordinary differential equations (ODEs) governing chemical kinetics with local skeletal mechanisms obtained on-the-fly using the directed relation graph (DRG) method, and by ISAT via reducing the number of ODE integrations through tabulating and re-using the ODE solutions. It is shown that, in contrast to ISAT, the performance of DAC is mostly independent of the nature of combustion simulations, e.g., steady or unsteady, premixed or non-premixed combustion, and its efficiency increases with the size of chemical kinetic mechanisms. DAC is particularly suitable for transient combustion simulations with large mechanisms containing hundreds of species or more, such as those for gasoline or diesel fuels. A speedup factor of about 30 is achieved for HCCI combustion of iso-octane/air with good agreements in the histories of temperature and species concentrations. In contrast, ISAT performs better for simulations where chemistry calculations can be predominantly resolved by retrieving from the ISAT table, i.e., re-using the ODE solutions. It is shown that ISAT achieves speedup factors of about 100 with only about 10%, 0.1% and 0.01% incurred errors in NO, CO, and temperature, respectively, for the premixed methane/air PaSR simulations. Moreover, a coupled DAC and ISAT approach, namely ISAT–DAC, has been developed and demonstrated in this study to accelerate chemistry evaluation. It is shown that the incurred errors in temperature and species concentrations in ISAT–DAC are well controlled, and it can significantly enhance the performance of ISAT, when the fraction of direct ODE integration is significant, via accelerating the ODE integrations by DAC.  相似文献   

7.
A computation model is developed, and flow dynamics and heat and mass transfer in a turbulent two-phase gas-drop ducted flow are numerically studied. To calculate the turbulent characteristics of the gas phase, the two-equation Nagano-Tagawa E-ε model was used, modified so that to account for presence of liquid drops in the flow. The impact of various parameters on heat transfer intensification is analyzed. An increase in the gas concentration in the vapor-gas mixture enhances the rate of heat transfer over the initial length of the duct and reduces the length of the evaporation zone. The computed flow dynamics and heat- and mass transfer data are compared with previously reported experimental and numerical results, and a fairly good agreement between the compared data is obtained.  相似文献   

8.
The paper presents a numerical analysis of the nonlinear rarefied gas flow through a long planar channel of finite length. The solution is constructed for the arbitrary pressure and temperature drops, including flow into vacuum. The obtained results for the flow rates are compared with the linearized solutions in the large range of degree of gas rarefaction. The boundaries of the validity of the linearized approximation are established.  相似文献   

9.
The paper addresses numerical simulation of turbulent two-phase flow in a long vertical tube and turbulent two-phase free jet formed at the tube outlet, analyzing agreement between the numerical results and the results of corresponding experimental investigation carried out earlier.In the numerical analyses conducted, gas phase was modeled as an air flow (having a mass flow-rate in the range of 1.25–4.00 g/s), while the sand particles of two different sizes (0.25–0.30 and 0.8–1.0 mm) represented a discrete phase (particle to gas mass flow ratio of 0.72–4.08) in the two-phase flow considered. Gas-particle interaction was analyzed based on the gas velocities in the particle-laden two-phase flow and the particle-free gas flow, calculated and measured at various locations along the longitudinal axis and radius of the jet.Mathematical model of continuous phase flow was developed based on the single phase flow models, with certain corrections introduced to account for the effects of particles in the flow. In the simulation model developed, the flow analyzed was modeled as a two-phase mixture, with Eulerian simulation used to account for the gas phase behavior and the Lagrangian simulation modeling the particle movement in the two-phase flow considered. In order to appropriately close the system of time-averaged equations, k–ε turbulent model, deemed the most reliable, was used. Phase coupling i.e. fluid-particle interaction was modeled using the PSI-CELL concept. The results obtained via numerical simulation have shown a good agreement with the experimental data acquired.  相似文献   

10.
This paper investigates a planar anode-supported solid oxide fuel cell (SOFC) with mixed-conducting electrodes. Direct internal methane reforming in the high-temperature cell is included. The numerical model used is three-dimensional, a single computational domain comprising the fuel and air channels and the electrodes–electrolyte assembly. The oxygen ion transport through the electrolyte is mimicked with an algorithm for Fickian diffusion built into the commercial computational package Star-CD. The equations describing transport, chemical and electrochemical processes for mass, momentum, species and energy are solved using Star-CD with in-house developed subroutines. Results for temperature, chemical species and current density distribution for co- and counter-flow configurations are shown and discussed. For co-flow, a sub-cooling effect manifests itself in the methane-rich region near the fuel entrance, while for counter-flow a super-heating effect manifests itself somewhat further downstream, where all the methane is consumed. Effects of varying air inlet conditions are also investigated.  相似文献   

11.
为研究不同负荷超(超)临界塔式炉膛内燃烧及烟气流动的非线性特性,以某1 000 MW塔式炉膛为原型设计出几何结构和边界条件完全对称的三维简化锅炉模型,运用FLUENT软件模拟了锅炉在3种不同负荷(100%,75%和50%阀门全开工况(VWO))下炉膛内的速度场、温度场及NOx的分布情况,并分析了非线性特性,最后建立了一个三维冷态切圆射流实验模型并进行验证,提出顺序启动的喷口启动方式。结果表明:不同负荷下,完全对称的炉膛内烟气流动速度、温度和组分分布均存在非线性现象,模拟结果得到关于模型几何竖直中心线不对称的解;喷嘴通过顺序启动方式可使切圆偏斜程度更小,流动形成的切圆能稳定在一个位置,实现流动的精准控制。  相似文献   

12.
Numerical studies are presented for gas resonant oscillations in a two-dimensional closed tube using the lattice Boltzmann method. A multi-distribution function model of thermal lattice Boltzmann method is adopted in this work. The oscillating flow of the gas is generated by a plane piston at one end, and reflected by the other closed end. Both isothermal and adiabatic walls of the closed tube are considered. Boundary treatments such as moving adiabatic boundary are given in detail. The time dependent velocity, density and temperature at various locations of the tube for various frequencies and wall boundary conditions are presented. Shock waves with resonant frequency or slightly off-resonant frequencies are numerically captured. From the simulation results, the gas flow and heat transfer characteristics obtained are consistent qualitatively with those from previous simulations using conventional numerical methods.  相似文献   

13.
Computational fluid dynamics (CFD) simulations are conducted using the volume-of-fluid (VOF) method to investigate the hydrodynamic characteristics of slug flow and the mechanism of slug flow induced CO2 corrosion. The hydrodynamic characteristics are significantly affected by the viscous, interfacial, and inertial forces. In inertia dominated flows, the velocity of fully developed falling liquid film is increased with increased Taylor bubble rising velocity. The developing falling liquid film is formed at about the length of 0.5 diameter from the Taylor bubble nose, the fully developed falling liquid film is reached at about the length of 1.5–2.1 diameter from the Taylor bubble nose. The average mass transfer coefficient in the falling liquid film is always higher than that in the Taylor bubble wake zone. The iron ion near wall mass transfer coefficient is higher than that of hydrogen ion. The wall shear stress is increased with increased Taylor bubble rising velocity in fully developed falling liquid film zone, and the wall shear stress has a large fluctuation due to the chaotic and turbulent vortexes in Taylor bubble wake zone. The formation and the damage mechanism of the corrosion product scale are proposed for the gas–liquid two-phase vertical upward slug flow induced CO2 corrosion. It is found that the wall shear stress of upward gas–liquid slug flow is alternate with high frequency, which is the key factor resulting in the corrosion product scale fatigue cracking. The CFD simulation results are in satisfactory agreement with previous experimental data and models available in literature.  相似文献   

14.
通过实验和数值模拟来研究气体在渐缩微喷管内流动,基于连续介质模型研究了二维微喷管内的流场及推力特性,研究分析了流量和气体入口温度对微喷管流场结构和喷管性能的影响。研究结果表明,随着流量的不断增加,气体稀薄效应相应减小,粘性力对喷管流动的影响降低,边界层逐渐变薄,马赫数不断增大,微喷管的推力大小近似与流量成线性变化,但流量变化对微喷管流场结构影响并不显著。当温度增大时,粘性损失对喷管影响较大,导致边界层变厚,影响了微喷管推进性能,流场马赫数和微喷管推力随温度的升高而下降,说明低温气体有利于提高微喷管的推进性能。  相似文献   

15.
Numerical and physical requirements to simulations of sub-sonic release and dispersion of light gas in an enclosure with one vent are described and discussed. Six validation experiments performed at CEA in a fuel cell-like enclosure of sizes H × W × L = 126 × 93 × 93 cm with one vent, either W × H = 90 × 18 cm (vent A) or 18 × 18 cm (B) or 1 cm in diameter (C), with a vertical upward helium release from a pipe of internal diameter either 5 mm or 20 mm located 21 cm above the floor centre, were used in a parametric study comprising 17 numerical simulations. Three CFD models were applied, i.e. laminar, standard k-?, and dynamic LES Smagorinsky–Lilly, to clarify a range of their applicability and performance. The LES model consistently demonstrated the best performance in reproduction of measured concentrations throughout the whole range of experimental conditions, including laminar, transitional and turbulent releases even with large CFL numbers. The laminar and the standard k-? models were under performing in the reproduction of turbulent and laminar releases respectively, as expected, as well as in simulation of transitional flows. The laminar model demonstrated high sensitivity to the CFL (Courant–Friedrichs–Lewy) number even below the best practices limit of 40. Three different computational domains and grids were used in order to clarify the influence of mesh quality on the capability of simulations to reproduce the experimental data. It is concluded that physically substantiated choice of CFD model, the control of the CFL number (and released gas mass balance where appropriate), and the mesh quality can have a strong effect on the capability of simulations to reproduce experiments and, in general, on the reliability of CFD tools for application in hydrogen safety engineering.  相似文献   

16.
The transition from steady to oscillatory flow for a very low Prandtl number fluid (Pr = 0.008) is computed for rectangular enclosures with aspect ratios (length/height) of 0.25, 0.4, 1.0, and 2.0 and are found to occur at Rayleigh numbers of 250,000, 130,000, 83,500, and 30,000 respectively. The structures of the oscillations are graphically depicted and are manifested in corner cells which dissipate into centered cells and then into opposite corner cells. A secondary flow transition is detected for a geometry with an aspect ratio of 1.0 at Ra = 1.2Rac2.  相似文献   

17.
The present work investigates the effects of the temperature and thermal stress distributions in a planar solid oxide fuel cell (SOFC) unit cell. A computational fluid dynamic (CFD) analysis of a planar anode-supported SOFC that considers electrochemical reactions is performed, and the thermal stresses are calculated. The static friction coefficients are assumed to range from 0.05 to 0.3, and conservatively, a perfectly bonded condition is assumed. The results show that the electrolyte is the weakest component and has the maximum stress because the electrolyte is the thinnest and the Young modulus is the highest. Thus, the contact between the anode electrode and the electrolyte, and between the cathode electrode and the electrolyte, would be the perfectly bonded condition. As a result, this research showed that the stresses induced by constraint forces with various contact conditions were dominant for the structural stability in a SOFC. Therefore, static friction coefficients on operative high temperature conditions are important to predict the structural integrity in a SOFC, and they will be investigated in future works in order to improve the structural stability in a stack design as well as in a SOFC.  相似文献   

18.
Among many equipment for passenger safety,the air bag system is the most fundamental and effective device foran automobile.The inflator housing is a main part of the curtain-type air bag system,which supplies high-pres-sure gases in pumping up the air bag-curtain which is increasingly being adapted in deluxe cars for protectingpassengers from the danger of side clash.However,flow information on the inflator housing is very limited.Inthis study,we measure the instantaneous velocity fields of a high-speed compressible flow issuing from the exitnozzle of an inflator housing using a dynamic PIV system.From the velocity field data measured at a highframe-rate,we evaluate the variation of the mass flow rate with time.The dynamic PIV system consists of ahigh-repetition Nd:YLF laser,a high-speed CMOS camera,and a delay generator.The flow images are taken at4000 fps with synchronization of the trigger signal for inflator ignition.From the instantaneous velocity field dataof flow ejecting from the airbag inflator housing at the initial stage,we can see a flow pattern of broken shockwave front and its downward propagation.The flow ejecting from the inflator housing is found to have very highvelocity fluctuations,with the maximum velocity at about 700 m/s.The time duration of the high-speed flow isvery short,and there is no perceptible flow after 100 ms.  相似文献   

19.
数值模拟了微通道受限空间内气体-近璧颗粒流动与传热过程,所建模型考虑微尺度气体的可压缩与交物性特征,且在通道和颗粒壁面采用速度滑移和温度跳跃边界条件以考虑滑移区气体动量/能量非连续效应.在此基础上,计算分析了克努森数(Kn)和颗粒偏移比对颗粒表面拖曳力系数(CD)以及传热努塞尔数(Nu)的影响规律.研究结果表明:受气体...  相似文献   

20.
The performances of the solid oxide electrolyzer cells (SOECs) are closely tied to the designs of gas flow configurations. This paper performed a numerical comparative investigation on a planar SOEC with the co-flow, counter-flow, and cross-flow configurations. The experimental measurements for I-V curve were conducted and compared to the simulations for model validation. Based on the 3-dimensional numerical simulations, the distribution characteristics of the species mass fractions, temperature, current density, Nernst potential, and activation polarizations for variant gas flow configurations were analyzed and compared in detail. The intrinsic relationships and mutual effects between these parameters were examined. The simulation results show that the operating temperature gradient of the counter-flow configuration is smaller than that of co-flow and cross-flow, which is favorable for the durability of the cells. The distributions of the current density and activation polarizations in the case of cross-flow configuration appear in checkerboard characteristic. Compared to the co-flow and counter-flow, the cross-flow configuration obtains the best performance under the same boundary conditions as it produces the most hydrogen under the same boundary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号