首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of hydrogenated fuels shows considerable promise for applications in gas turbines and internal combustion engines. In the present work, the effects of hydrogen addition in methane/air flames are investigated using both a laminar flame propagation facility and a high-pressure turbulent flame facility. The aim of this research is to contribute to the characterization of lean methane/hydrogen/air premixed turbulent flames at high pressures, by studying the flame front geometry, the flame surface density and the instantaneous flame front thermal thickness distributions. The experiments and analyses show that a small amount of hydrogen addition in turbulent premixed methane–air flames introduces changes in both instantaneous and average flame characteristics.  相似文献   

2.
Preferential species diffusion is known to have important effects on local flame structure in turbulent premixed flames, and differential diffusion of heat and mass can have significant effects on both local flame structure and global flame parameters, such as turbulent flame speed. However, models for turbulent premixed combustion normally assume that atomic mass fractions are conserved from reactants to fully burnt products. Experiments reported here indicate that this basic assumption may be incorrect for an important class of turbulent flames. Measurements of major species and temperature in the near field of turbulent, bluff-body stabilized, lean premixed methane–air flames (Le = 0.98) reveal significant departures from expected conditional mean compositional structure in the combustion products as well as within the flame. Net increases exceeding 10% in the equivalence ratio and the carbon-to-hydrogen atom ratio are observed across the turbulent flame brush. Corresponding measurements across an unstrained laminar flame at similar equivalence ratio are in close agreement with calculations performed using Chemkin with the GRI 3.0 mechanism and multi-component transport, confirming accuracy of experimental techniques. Results suggest that the large effects observed in the turbulent bluff-body burner are cause by preferential transport of H2 and H2O through the preheat zone ahead of CO2 and CO, followed by convective transport downstream and away from the local flame brush. This preferential transport effect increases with increasing velocity of reactants past the bluff body and is apparently amplified by the presence of a strong recirculation zone where excess CO2 is accumulated.  相似文献   

3.
We report on the application of simultaneous single-shot imaging of CH and OH radicals using planar laser-induced fluorescence (PLIF) to investigate partially premixed turbulent jet flames. Various flames have been stabilized on a coaxial jet flame burner consisting of an outer and an inner tube of diameter 22 and 2.2 mm, respectively. From the outer tube a rich methane/air mixture was supplied at a relatively low flow velocity, while a jet of pure air was introduced from the inner one, resulting in a turbulent jet flame on top of a laminar pilot flame. The turbulence intensity was controlled by varying the inner jet flow speed from 0 up to 120 m/s, corresponding to a maximal Reynolds number of the inner jet airflow of 13,200. The CH/OH PLIF imaging clearly revealed the local structure of the studied flames. In the proximity of the burner, a two-layer reaction zone structure was identified where an inner zone characterized by strong CH signals has a typical structure of rich premixed flames. An outer reaction zone characterized by strong OH signals has a typical structure of a diffusion flame that oxidizes the intermediate fuels formed in the inner rich premixed flame. In the moderate-turbulence flow, the CH layers were very thin closed surfaces in the entire flame, whereas the OH layers were much thicker. In the high-intensity-turbulence flame, the CH layer remained thin until it vanished in the upper part of the flame, showing local extinction and reignition behavior of the flame. The single-shot PLIF images have been utilized to determine the flame surface density (FSD). In low and moderate turbulence intensity cases the FSDs determined from CH and OH agreed with each other, while in the highly turbulent case a locally broken CH layer was observed, leading to a significant difference in the FSD results determined via the OH and CH radicals. Furthermore, the means and the standard deviations of CH and OH radicals were obtained to provide statistical information about the flames that may be used for validation of numerical calculations.  相似文献   

4.
Instantaneous flame front structure of syngas turbulent premixed flames including the local radius of curvature, the characteristic radius of curvature, the fractal inner cutoff scale and the local flame angle were derived from the experimental OH-PLIF images. The CO/H2/CO2/air flames as a model of syngas/air combustion were investigated at pressure of 0.5 MPa and compared to that of CH4/air flames. The convex and concave structures of the flame front were detected and statistical analysis including the PDF and ADF of the local radius of curvature and local flame angle were conducted. Results show that the flame front of turbulent premixed flames at high pressure is a wrinkled flame front with small scale convex and concave structures superimposed with large scale flame branches. The convex structures are much more frequent than the concave ones on flame front which reflects a general characteristic of the turbulent premixed flames at high pressure. The syngas flames possess much wrinkled flame front with much smaller fine cusps structure compared to that of CH4/air flames and the main difference is on the convex structure. The effect of turbulence on the general wrinkled scale of flame front is much weaker than that of the smallest wrinkled scale. The general wrinkled scale is mainly dominated by the turbulence vortex scale, while, the smallest wrinkled scale is strongly affected by the flame intrinsic instability. The effect of flame intrinsic instability on flame front of turbulent premixed flame is mainly on the formation of a large number of convex structure propagating to the unburned reactants and enlarge the effective contact surface between flame front and unburned reactants.  相似文献   

5.
Triple flames consisting of lean, stoichiometric, and rich reaction zones may be produced in stratified mixtures undergoing combustion. Such flames have unique characteristics that differ from premixed flames. The present work offers a direct comparison of the structure and propagation behavior between hydrogen/air triple and premixed flames through a numerical study. Important similarities and differences are highlighted. Premixed flames are generated by spark-igniting initially quiescent homogeneous mixtures of hydrogen and air in a two-dimensional domain. Triple flame results are also generated in a two-dimensional domain by spark-igniting initially quiescent hydrogen/air stratified layers. Detailed flame structure and chemical reactivity information is collected along isocontours of equivalence ratio 0.5, 1.0, and 3.0 in the triple flame for comparison with premixed flames at the same equivalence ratios. Full chemistry and effective binary diffusion coefficients are employed for all computations.  相似文献   

6.
The present study investigates freely propagating methane/hydrogen lean-premixed laminar flames at elevated pressures to understand the hydrogen addition effect of natural gas on the NO formation under the conditions of industrial gas turbine combustors. The detailed chemical kinetic model which was used in the previous study on the NO formation in high pressure methane/air premixed flames was adopted for the present study to analyze NO formation of methane/hydrogen premixed flames. The present mechanism shows good agreement with experimental data for methane/hydrogen mixtures, including ignition delay times, laminar burning velocities, and NO concentration in premixed flames. Hydrogen addition to methane/air mixtures with maintaining methane content leads to the increase of NO concentration in laminar premixed flames due to the higher flame temperature. Methane/hydrogen/argon/air premixed flames are simulated to avoid the flame temperature effect on NO formation over a pressure range of 1–20atm and equivalence ratio of 0.55. Kinetic analyses shows that the N2O mechanism is important on NO formation for lean flames between the reaction zone and postflame region, and thermal NO is dominant in the postflame zone. The hydrogen addition leads to the increase of NO formation from prompt NO and NNH mechanisms, while NO formation from thermal and N2O mechanisms are decreased. Additionally, the NO formation in the postflame zone has positive pressure dependencies for thermal NO with an exponent of 0.5. Sensitivity analysis results identify that the initiation reaction step for the thermal NO and the N2O mechanism related reactions are sensitive to NO formation near the reaction zone.  相似文献   

7.
Direct comparison of the turbulent burning velocity (obtained from flame speeds) to the flame perimeter ratio has been made in turbulent premixed flames propagating freely downward for propane/air mixtures at various equivalence ratios, with u′/SL of ranging from 1.4 to 5.3. The turbulent flame speed ranged from 2.6 to about 7 times the laminar flame speed at high turbulence intensities, while the flame perimeter ratio ranges from 1.4 to 3.3. In the current freely propagating flames, the global flame curvature can lead to an enhancement of the flame speed by a factor of up to 3.5. This global flame curvature is attributable to the wall heat loss in the current burner configuration, and flame brush thickness has been used as a measure of the global flame curvature. For flames involving coupling of the globally curved flame geometry with flow divergence or any flow non-uniformity, correcting for this geometrical effect requires a careful consideration of the flame topology and flow field. The difference between the observed flame speed and the 2-D flame perimeter ratio, after correcting for the global flame curvature effect, is attributed to the fact that the flame wrinkles in three-dimensions are associated with a larger flame surface area than that determined from the flame perimeter ratio data. This also points to a need to better understand the 3-D geometrical effects including the global flame curvature and the local flame wrinkle structure in turbulent premixed flames. The observed turbulent flame speed data for the most part follow the flame speed models of Bray and Damkohler, wherein the flame surface area increase is modeled as a function of turbulence and thermochemical properties. The above results, taken together, indicate that the fundamental assumption that the turbulent flame speed depends primarily on the increased flame surface area is valid. This concept can be used to estimate the turbulent flame speed within reasonable accuracy provided that the 3-D flame effects associated with the global flame curvature and local flame wrinkle structure are considered.Keywords: Turbulent premixed flames, Flame speed, Flame surface, Burning velocity  相似文献   

8.
《Combustion and Flame》2003,132(1-2):58-72
The possible burning structures existing in two co-flowing combustible mixtures with different compositions, and their implications to the field of turbulent combustion are examined in this study. A coaxial burner with a quartz plate was used to experimentally investigate the flames of methane/air and propane/air mixtures propagating in a coaxial flow impinging onto a stagnation surface. The possible burning structures were observed to be: (1) a single-flame (a lean or rich premixed flame); (2) a double-flame (two lean or rich premixed flames, or a rich premixed flame and a diffusion flame); and (3) a triple-flame (a rich premixed flame, a diffusion flame and a lean premixed flame). An inner (or outer) mixture, far beyond the flammability limit, can still burn if a stronger outer (or inner) flame supports it. The extinction limit of the top part of the inner hat-shaped premixed flame is nearly independent of the burning intensity of the outer flame. It was found that the inner flame has a wider flammable region than the outer flame, and that the latter has a narrower flashback region than the former. Both propane and methane flames may exhibit flame-front instability, although the former displays much more clearly than the latter. Cellular and polyhedral instabilities can exist individually or appear simultaneously in the inner flame. However, only polyhedral (stripped-pattern) instability was observed in the outer flame. Finally, the experiments were analyzed theoretically using a simple geometrical model incorporated with the numerical simulations. The predicted shapes and locations of the flames are in good agreement with the experimental observations qualitatively.  相似文献   

9.
In the present study, we conducted experiments to investigate the effects of external turbulence on the development of spherical H2/CH4/air unstable flames developments at two different equivalence ratios associated with different turbulent intensities using a spherical constant-volume turbulent combustion bomb and high speed schlieren photography technology. Flame front morphology and acceleration process were recorded and different effects of weak external turbulent flow field and intrinsic flame instability on the unstable flame propagation were compared. Results showed the external turbulence has a great influence on the unstable flame propagation under rich fuel conditions. For fuel-lean premixed flames, however, the effects of external turbulence on the morphology of the cellular structure on the flame front was not that obvious. Critical radius decreased firstly and then kept almost unchanged with the augment of the turbulence intensity. This indicated the dominating inhibiting effect of flame stretch on the turbulent premixed flame at the initial stage of the flame front development. Beyond the critical radius, the acceleration exponent was found increasing with the enhancement of initial turbulence intensity for fuel-lean premixed flames. For fuel-rich conditions, however, the initial turbulence intensity had little effect on acceleration exponent. In order to evaluate the important impact of the intrinsic flame instability and external turbulent flow field for spherical propagating premixed flames, intrinsic flame instability scale and average diameter of vortex tube were calculated. Intrinsic flame instability scale decreased greatly and then stayed unchanged with the propagation of the flame front. The comparison between intrinsic flame instability scale and average diameter of vortex tube demonstrated that the external turbulent flow filed will be more important for the evolution of wrinkle structure in the final stage of the flame propagation, when the turbulence intensity was more than 0.404 m/s.  相似文献   

10.
This paper describes a mechanism for the stabilization of ultra lean premixed methane/air flames by pulsed nonequilibrium plasma enhancement. It is shown that the pulsed discharge plasma produces a cool (~500–600 K) stream of relatively stable intermediate species including hydrogen (H2) and carbon monoxide (CO), which play a central role in enhancing flame stability. This stream is readily visualized by ultraviolet emission from electronically excited hydroxyl (OH) radicals. The rotational and vibrational temperature of this “preflame” are determined from its emission spectrum. Qualitative imaging of the overall flame structure is obtained by planar laser-induced fluorescence measurements of OH. Preflame nitric oxide (NO) concentrations are determined by gas sampling chromatography. A simple numerical model of this plasma enhanced premixed flame is proposed that includes the generation of the preflame through plasma activation, and predicts the formation of a dual flame structure that arises when the preflame serves to pilot the combustion of the surrounding non-activated premixed flow. The calculation represents the plasma through its ability to produce an initial radical yield, which serves as a boundary condition for conventional flame simulations. The simulations also capture the presence of the preflame and the dual flame structure, and predict preflame levels of NO comparable to those measured. A subsequent pseudo-sensitivity analysis of the preflame shows that flame stability is most sensitive to the concentrations of H2 and CO in the preflame. As a consequence of the role of H2 and CO in enhancing the flame stability, the blowout limit extensions of methane/air and hydrogen/air mixtures in the absence/presence of a discharge are investigated experimentally. For methane/air mixtures, the blowout limit of the current burner is extended by ~10% in the presence of a discharge while comparable studies carried out in lean hydrogen/air flames fail to extend this limit.  相似文献   

11.
In order to investigate oxyfuel combustion characteristics of typical composition of coal gasification syngas connected to CCS systems. Instantaneous flame front structure of turbulent premixed flames of CO/H2/O2/CO2 mixtures which represent syngas oxyfuel combustion was quantitatively studied comparing with CH4/air and syngas/air flames by using a nozzle-type Bunsen burner. Hot-wire anemometer and OH-PLIF were used to measure the turbulent flow and detect the instantaneous flame front structure, respectively. Image processing and statistical analyzing were performed using the Matlab Software. Flame surface density, mean progress variable, local curvature radius, mean flame volume, and flame thickness, were obtained. Results show that turbulent premixed flames of syngas possess wrinkled flame front structure which is a general feature of turbulent premixed flames. Flame surface density for the CO/H2/O2/CO2 flame is much larger than that of CO/H2/O2/air and CH4/air flames. This is mainly caused by the smaller flame intrinsic instability scale, which would lead to smaller scales and less flame passivity response to turbulence presented by Markstain length, which reduce the local flame stretch against turbulence vortex. Peak value of Possibility Density Function (PDF) distribution of local curvature radius, R, for CO/H2/O2/CO2 flames is larger than those of CO/H2/O2/air and CH4/air flames at both positive and negative side and the corresponding R of absolute peak PDF is the smallest. This demonstrates that the most frequent scale is the smallest for CO/H2/O2/CO2 flames. Mean flame volume of CO/H2/O2/CO2 flame is smaller than that of CH4/air flame even smaller than that of CO/H2/O2/air flame. This would be due to the lower flame height and smaller flame wrinkles.  相似文献   

12.
Edge flames obtained on a hydrogen/air non-premixed opposed-jet burner after the local extinction of the disk-shaped diffusion flame are investigated with 2-D direct numerical simulations using detailed chemical kinetics and transport. Over a large range of flowrates, edge flames were found to coexist with the well-known strongly burning diffusion flames corresponding to the upper branch of the S-shaped curve. The critical flowrates of the strong hysteresis associated with the transitions between the two solution branches were identified: re-establishment of the diffusion flame is controlled by the propagation of the edge flame and cannot be represented simply by the extinction scalar dissipation rate. It was also observed that in all the flow conditions simulated, the edge flame was able to consume all the supplied fuel by re-orienting itself, varying its flame surface area, or changing its structure. The latter was found to depend on the flow conditions (which strongly affects the degree of mixing ahead of the edge flame) and can take on different configurations ranging from a triple flame to an essentially premixed flame. Because of flame curvature and the preferential diffusion of hydrogen, the propagation speed of the edge flames was found to be higher than that of the corresponding planar premixed flames.  相似文献   

13.
Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require corrections which are studied using two-dimensional DNS. Numerical simulations also provide stretch, displacement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames.  相似文献   

14.
Recent work on reaction modelling of turbulent lean premixed combustion has shown a significant influence of the Lewis number even at high turbulence intensities, if different fuels and varied pressure is regarded. This was unexpected, as the Lewis number is based on molecular transport quantities (ratio of molecular thermal diffusivity to mass diffusivity), while highly turbulent flames are thought to be dominated from turbulent mixing and not from molecular transport. A simple physical picture allows an explanation, assuming that essentially the leading part of the wrinkled flame front determines the flame propagation and the average reaction rate, while the rear part of the flame is of reduced importance here (determining possibly the burnout process and the flame brush thickness but not the flame propagation). Following this argumentation, mostly positively curved flame elements determine the flame propagation and the average reaction rate, where the influence of the preferential molecular diffusion and the Lewis number can easily seen to be important. Additionally, an extension of this picture allows a simple derivation of an effective Lewis number relation for lean hydrogen/methane mixtures. The applicability and the limit of this concept is investigated for two sets of flames: turbulent pressurized Bunsen flames, where hydrogen content and pressure is varied (from CNRS Orléans), and highly turbulent pressurized dump combustor flames where the hydrogen content is varied (from PSI Baden). For RANS simulations, comparison of flame length data between experiment and an effective Lewis number model shows a very good agreement for all these flames with hydrogen content of the fuel up to 20 vol.%, and even rather good agreement for 30% and 40% hydrogen.  相似文献   

15.
Syngas has been widely concerned and tested in various thermo-power devices as one promising alternative fuel. However, little is known about the turbulent combustion characteristics, especially on outwardly propagating turbulent syngas/air premixed flames. In this paper, the outwardly propagating turbulent syngas/air premixed flames were experimentally investigated in a constant-volume fan-stirred vessel. Tests were conducted on stoichiometric syngas with different hydrogen volumetric fractions (XH2, 10%–90%) in the ambience with different initial turbulence intensity (u'rms, 0.100 m/s~1.309 m/s). Turbulent burning velocity was taken as the major topic to be studied upon the multi-zone model in constant-volume propagating flame method. The influences of initial turbulent intensity and hydrogen volumetric fraction on the turbulent flame speed were analysed and discussed. An explicit correlation of turbulent flame speed was obtained from the experimental results.  相似文献   

16.
Hydrogen/air swirling premixed flames with different equivalence ratios are studied using direct numerical simulation. A fourth-order explicit Runge–Kutta method for time integration and an eighth-order central differencing scheme for spatial discretization are used to solve the full Navier–Stokes (N–S) equation system. A 9 species 19-step reduced mechanism for hydrogen/air combustion is adopted. The flames are stabilized with the help of a recirculation zone characterizing a high swirling flow. The vortex structures of the swirling premixed flames are presented. The flame structures are investigated in terms of the flame front curvature and tangential strain rate probability density functions (pdfs). The local flamelet temperature profiles are also extracted randomly along the flame front and compared with the corresponding laminar flame temperature profile. In order to study preferential diffusion effects, direct numerical simulation of two additional freely propagating planar flames in isotropic turbulence is conducted. Preferential diffusion effects observed in the planar flames are suppressed in the swirling flames. Further analysis confirms that the coherent small-scale eddies play important roles in the interactions between turbulence and the flame front. They are able to change the dynamic properties of the flame font and lead to enhanced burning intensity in the flame front with negative curvature for both stoichiometric and fuel-lean flames.  相似文献   

17.
Quantitative measurements of OH concentration time series are presented for turbulent lean-premixed, methane-air jet flames theoretically in the thickened preheat regime. Picosecond time-resolved laser-induced fluorescence (PITLIF) reveals unique differences between these premixed flames and previous non-premixed jet flames. Time-averaged [OH] measurements are used to identify mean flame structures and to discern how these structures are affected by varying bulk flow velocities and heat release. More importantly, hydroxyl time series are inspected to distinguish among three main regions in these turbulent premixed flames. These regions include the reacting side of the flame brush, the mixing side of the flame brush (radially outside the location of heat release), and above the flame tip. Although the main reaction zone appears to be broadened by its associated high turbulent intensity, a combination of statistical analysis plus flamelet simulations suggests that the primary internal structure responsible for the OH distribution remains constant across the mean flame brush. Therefore, the absolute concentration of OH depends principally on the intermittency of this instantaneous internal structure. Outside the mean flame brush, mixing of OH with co-flow air shifts the distribution of absolute OH concentrations. Distinct autocorrelation functions are found within the three different regions identified for these premixed flames. Across the flame brush, integral time scales are dominated by turbulent convection, as verified by flamelet simulations. Above the flame tip, integral time scales are determined by a competition between turbulent convection and the reaction rate for OH destruction.  相似文献   

18.
Quantitative time-dependent images of the infrared radiation intensity from methane and dimethyl ether (DME) turbulent nonpremixed and partially premixed jet flames are measured and discussed in this work. The fuel compositions (CH4/H2/N2, C2H6O/H2/N2, CH4/air, and C2H6O/air) and Reynolds numbers (15,200–46,250) for the flames were selected following the guidelines of the International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames (TNF Workshop). The images of the radiation intensity are acquired using a calibrated high speed infrared camera and three band-pass filters. The band-pass filters enable measurements of radiation from water vapor and carbon dioxide over the entire flame length and beyond. The images reveal localized regions of high and low intensity characteristic of turbulent flames. The peak mean radiation intensity is approximately 15% larger for the DME nonpremixed flames and 30% larger for the DME partially premixed flames in comparison to the corresponding methane flames. The trends are explained by a combination of higher temperatures and longer stoichiometric flame lengths for the DME flames. The longer flame lengths are attributed to the higher density of the DME fuel mixtures based on existing flame length scaling relationships. The longer flame lengths result in larger volumes of high temperature gas and correspondingly higher path-integrated radiation intensities near and downstream of the stoichiometric flame length. The radiation intensity measurements acquired with the infrared camera agree with existing spectroscopy measurements demonstrating the quantitative nature of the present imaging technique. The images provide new benchmark data of turbulent nonpremixed and partially premixed jet flames. The images can be compared with results of large eddy simulations rendered in the form of quantitative images of the infrared radiation intensity. Such comparisons are expected to support the evaluation of models used in turbulent combustion and radiation simulations.  相似文献   

19.
The transient behavior of burner-supported spherical diffusion flames was studied in the transport-induced limit of low mass flow rate and the radiation-induced limit of high mass flow rate which characterize the isola response of flame extinction. Oscillatory instability was observed near both steady-state extinction limits. The oscillation typically grows in amplitude until it becomes large enough to extinguish the flame. The oscillatory behavior was numerically observed using detailed chemistry and transport for methane (50%CH4/50%He into 21%O2/79%He) and hydrogen (100% H2 into 21%O2/79%He) diffusion flames where the fuel was issued from a point source, and helium was selected as an inert to increase the Lewis number, facilitating the onset of oscillation. In both methane and hydrogen flames, the oscillation always leads to extinction, and no limit cycle behavior was found. The growth rate of the oscillation was found to be slow enough under certain conditions to allow the flame to oscillate for over 450 s, suggesting that such oscillations can possibly be observed experimentally. For the hydrogen flames, however, the frequency of oscillation near the transport-induced limit is much larger, approximately 60 Hz as compared to 0.35 Hz for the methane flame, and the maximum amplitude of temperature oscillations was about 5 K. The distinctively different structures of the hydrogen and methane flames suggest that while both instabilities are thermal-diffusive in origin, oscillations in the hydrogen flames resemble those of premixed flames, while oscillations in the methane flames are non-premixed in character.  相似文献   

20.
The common misconception that hydrogen flames are not visible is examined. Examples are presented of clearly visible emissions from typical hydrogen flames. It is shown that while visible emissions from these flames are considerably weaker than those from comparable hydrocarbon flames, they are indeed visible, albeit at reduced light levels in most cases. Detailed flame spectra are presented to characterize flame emission bands in the ultraviolet, visible and infrared regions of the spectrum that result in a visible hydrogen flame. The visible blue emission is emphasized, and recorded spectra indicate that fine spectral structure is superimposed on a broadband continuum extending from the ultraviolet into the visible region. Tests were performed to show that this emission does not arise from carbon or nitrogen chemistry resulting from carbon-containing impurities (hydrocarbons) in the hydrogen fuel or from CO2 or N2 entrainment from the surrounding air. The spectral structure, however, is also observed in methane flames. The magnitude of the broadband emission increases with flame temperature in a highly nonlinear manner while the finer spectral structure is insensitive to temperature. A comparison of diffusion and premixed H2 flames shows that the fine scale structure is comparable in both flames.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号