首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, the role of Lewis and Damköhler numbers on the premixed flame propagation through micro-organic dust particles is investigated. It is presumed that the fuel particles vaporize first to yield a gaseous fuel, which is oxidized in the gas phase. In order to simulate the combustion process, the flame structure is composed of four zones; a preheat zone, a vaporization zone, a reaction zone and finally a post flame zone, respectively. Then the governing equations, required boundary conditions and matching conditions are applied for each zone and the standard asymptotic method is used in order to solve these differential equations. Consequently the important parameters on the combustion phenomenon of organic dust particles such as gaseous fuel mass fraction, organic dust mass fraction and burning velocity with the various numbers of Lewis, Damköhler and the onset of vaporization are plotted in figures. This prediction has a reasonable agreement with experimental data of micro-organic dust particle combustion.  相似文献   

2.
In order to evaluate the potential of partial hydrocarbon substitution to improve the safety of hydrogen use in general and the performance of internal combustion engines in particular, the outward propagation and development of surface cellular instability of spark-ignited spherical premixed flames of mixtures of hydrogen, hydrocarbon, and air were experimentally studied at NTP condition in a constant-pressure combustion chamber. With methane, ethylene, and propane being the substituents, the laminar burning velocities, the Markstein lengths, and the propensity of cell formation were experimentally determined, while the laminar burning velocities and the associated flame thicknesses were computed using recent kinetic mechanisms. Results show substantial reduction of laminar burning velocities with hydrocarbon substitution, and support the potential of propane as a suppressant of both diffusional–thermal and hydrodynamic cellular instabilities in hydrogen–air flames. Such a potential, however, was not found for methane and ethylene as substituents.  相似文献   

3.
By utilizing a newly designed constant volume combustion bomb (CVCB), turbulent flame combustion phenomena are investigated using hydrogen–air mixture under the initial pressures of 1 bar, 2 bar and 3 bar, including flame acceleration, turbulent flame propagation and flame–shock interaction with pressure oscillations. The results show that the process of flame acceleration through perforated plate can be characterized by three stages: laminar flame, jet flame and turbulent flame. Fast turbulent flame can generate a visible shock wave ahead of the flame front, which is reflected from the end wall of combustion chamber. Subsequently, the velocity of reflected shock wave declines gradually since it is affected by the compression wave formed by flame acceleration. In return, the propagation velocity of turbulent flame front is also influenced. The intense interaction between flame front and reflected shock can be captured by high-speed schlieren photography clearly under different initial pressures. The results show that the propagation velocity of turbulent flame rises with the increase of initial pressure, while the forward shock velocities show no apparent difference. On the other hand, the reflected shock wave decays faster under higher initial pressure conditions due to the faster flame propagation. Moreover, the influence of initial pressure on pressure oscillations is also analyzed comprehensively according to the experimental results.  相似文献   

4.
We carried out numerical simulations to understand how CO2 dilution in either fuel or oxidizer stream changes the flame-vortex interactions in terms of hydrodynamic effects in CH4–air nonpremixed jet flames. The simulation used a time-dependent, axisymmetric computational model and a low Mach number approximation. Reaction rates were calculated from a two-step global reaction mechanism that considered six species. Studies were conducted with fixed initial velocities for three different cases of CO2 introduction: (1) without dilution, (2) dilution in a fuel stream, and (3) dilution in an oxidizer stream. A single vortex was generated by an axisymmetric jet driven of cold fuel, after a flame development was reached to quasi steady-state condition. The simulation shows that CO2 dilution in a fuel stream leads to a slightly increased vortex radius and more entrainment of surrounding fluids compared to the other dilution methods tested. Thus, dilution of CO2 in a fuel stream enhances the mixing inside a single vortex and increases the stretching of the flame surface. The vorticity transport equation budgets were examined to reveal the mechanisms of vortex formation in the presence of CO2. In the stage of vortex formation, vortex production due to baroclinic torque and vortex destruction due to volumetric expansion were found to be greater in the case of CO2 dilution in a fuel stream than in the other dilution cases. However, after vortex formation, there terms showed the opposite tendencies.  相似文献   

5.
The effects of bluff-body lip thickness on the several physical parameters like flame length, radiant fraction, gas temperature and NOxNOx emissions in liquefied petroleum gas (LPG)–H2 jet diffusion flame are investigated experimentally. Results indicate that the flame length reduces with the addition of hydrogen in the bluff-body stabilized flame, which can be attributed to the enhanced reactivity and residence time of the mixture gases. Moreover, with increasing lip thickness of the bluff body, the flame length also gets reduced. The soot free length fraction (SFLF) is observed to be enhanced with H2 addition to the fuel stream. In contrast, the SFLF gets reduced with increasing lip thickness repetition, which is due to the reduced induction period of soot formation. The emission index of NOxNOx (EINOxEINOx) is found to be attenuated in coaxial burner with hydrogen addition. In contrast it is observed to be enhanced in bluff-body stabilized flame. The former is due to the reduction in residence time of gas mixture, whereas the latter can be explained on the basis of increased flame temperature. Besides this, NOxNOx emission level is also found to be enhanced with increasing lip thickness due to enhanced residence time.  相似文献   

6.
An experimental study is carried out to investigate the effects of nozzle aspect ratio and nozzle number on the performance of a vortex tube. Two sets of vortex generator (a single nozzle set with aspect ratio of AR = 0.25, 0.44 and 0.69 and a multiple nozzle set with 2 and 3 nozzle number having the same total flow area) are tested under different inlet pressures. Dry air is used as the working fluid. The experimental results reveal that the nozzle aspect ratio has a great effect on the energy/temperature separation mechanism. The increase in the nozzle aspect ratio leads to the larger mixing zones, which, in turn, decreases the temperature difference between the cold and hot stream, the heating and the cooling performance. The results also showed that the vortex tube with a single nozzle yields better performance than the vortex tube with 2 and 3 nozzles.  相似文献   

7.
The effect of hydrogen addition and nitrogen dilution on laminar flame characteristics was investigated. The spherical expanding flame technique, in a constant volume bomb, was employed to extract laminar flame characteristics. The mole fraction of hydrogen in the methane–hydrogen mixture was varied from 0 to 1 and the mole fraction of nitrogen in the total mixture (methane–hydrogen–air–diluent) from 0 to 0.35. Measurements were performed at an initial pressure of 0.1 MPa and an initial temperature of 300 K. The mixtures investigated were under stoichiometric conditions. Based on experimental measurements, a new correlation for calculating the laminar burning velocity of methane–hydrogen–air–nitrogen mixtures is proposed. The laminar burning velocity was found to increase linearly with hydrogen mass fraction for all dilution ratios while the burned gas Markstein length decreases with the increase in hydrogen amount in the mixture except for high hydrogen mole fractions (>0.6). Nitrogen dilution has a nonlinear reducing effect on the laminar burning velocity and an increasing effect on the burned gas Markstein length. The experimental results and the proposed correlation obtained are in good agreement with literature values.  相似文献   

8.
Numerical and experimental studies are conducted to grasp downstream interactions between premixed flames stratified with two different kinds of fuel mixture. The selected fuel mixtures are methane and a nitrogen-diluted hydrogen with composition of 30% H2 + 70% N2. Extinction limits are determined for methane/air and (30% H2 + 70% N2)/air over the entire range of mixture concentrations. These extinction limits are shown to be significantly modified due to the interaction such that a mixture much beyond the flammability limit can burn with the help of a stronger flame. The lean extinction limit shows both the slanted segments of lower and upper branches due to the strong interaction with Lewis numbers of deficient reactant less than unity, while the rich extinction limit has a square shape due to the weak interaction with Lewis numbers of deficient reactant larger than unity. The regimes of negative flame speed show an asymmetric aspect with a single wing shape. The negative flame always appears only when methane is weak. The extent of interaction depends on the separation distance between the flames, which are the functions of the mixtures’ concentrations, the strain rate, the Lewis numbers, and the preferential diffusions of the penetrated hydrogen from the nitrogen-diluted hydrogen flame. The important role of preferential diffusion effects of hydrogen in the flame interaction is also discussed.  相似文献   

9.
Effects of hydrogen enrichment and steam addition on laminar burning velocity of methane–air premixed flame were studied both experimentally and numerically. Measurements were carried out using the slot burner method at 1 bar for fresh gases temperatures of 27 °C and 57 °C and for variable equivalence ratios going from 0.8 to 1.2. The hydrogen content in the fuel was varied from 0% to 30% in volume and the steam content in the air was varied from 0 to 112 g/kg (0–100% of relative humidity). Numerical calculations were performed using the COSILAB code with the GRI-Mech 3.0 mechanism for one-dimensional premixed flames. The calculations were implemented first at room temperature and pressure and then extended to higher temperatures (up to 917 K) and pressures (up to 50 bar). Measurements of laminar burning velocities of methane–hydrogen–air and methane–air–steam agree with the GRI-Mech calculations and previous measurements from literature obtained by different methods. Results show that enrichment by hydrogen increases of the laminar burning velocity and the adiabatic flame temperature. The addition of steam to a methane–air mixture noticeably decreases the burning velocity and the adiabatic flame temperature. Modeling shows that isentropic compression of fresh gases leads to the increase of laminar burning velocity.  相似文献   

10.
This paper shows that a flame can be an intrinsically unstable acoustic element. The finding is clarified in the framework of an acoustic network model, where the flame is described by an acoustic scattering matrix. The instability of the flame acoustic coupling is shown to become dominating in the limit of no acoustic reflections. This is in contrast to classical standing-wave thermoacoustic modes, which originate from the positive feedback loop between system acoustics and the flame. These findings imply that the effectiveness of passive thermoacoustic damping devices is limited by the intrinsic stability properties of the flame.  相似文献   

11.
The unstretched laminar burning velocities and Markstein numbers of spherically propagating hydrogen–methane–air flames were studied at a mixture pressure of 0.10 MPa and a mixture temperature of 350 K. The fraction of hydrogen in the binary fuel was varied from 0 to 1.0 at equivalence ratios of 0.8, 1.0 and 1.2. The unstretched laminar burning velocity increased non-linearly with hydrogen fraction for all the equivalence ratios. The Markstein number varied non-monotonically at equivalence ratios of 0.8 and 1.0 and increased monotonically at equivalence ratio of 1.2 with increasing hydrogen fraction. Analytical evaluation of the Markstein number suggested that the trends could be due to the effective Lewis number, which varied non-monotonically with hydrogen fraction at equivalence ratios of 0.8 and 1.0 and increased monotonically at 1.2. The propensity of flame instability varied non-monotonically with hydrogen fraction at equivalence ratios of 0.8 and 1.0.  相似文献   

12.
The combustion dynamics of propane–hydrogen mixtures are investigated in an atmospheric pressure, lean, premixed backward-facing step combustor. We systematically vary the equivalence ratio, inlet temperature and fuel composition to determine the stability map of the combustor. Simultaneous pressure, velocity, heat release rate and equivalence ratio measurements and high-speed video from the experiments are used to identify and characterize several distinct operating modes. When fuel is injected far upstream from the step, the equivalence ratio entering the flame is temporally and spatially uniform, and the combustion dynamics are governed only by flame–vortex interactions. Four distinct dynamic regimes are observed depending on the operating parameters. At high but lean equivalence ratios, the flame is unstable and oscillates strongly as it is wrapped around the large unsteady wake vortex. At intermediate equivalence ratios, weakly oscillating quasi-stable flames are observed. Near the lean blowout limit, long stable flames extending from the corner of the step are formed. At atmospheric inlet temperature, the unstable mode resonates at the 1/4 wavemode of the combustor. As the inlet temperature is increased, the 5/4 wavemode of the combustor is excited at high but lean equivalence ratios, forming the high-frequency unstable flames. Higher hydrogen concentration in the fuel and higher inlet temperatures reduce the equivalence ratios at which the transitions between regimes are observed. We plot combustion dynamics maps or the response curves, that is the overall sound pressure level as a function of the equivalence ratio, for different operating conditions. We demonstrate that numerical results of strained premixed flames can be used to collapse the response curves describing the transitions among the dynamic modes onto a function of the heat release rate parameter alone, rather than a function dependent on the equivalence ratio, inlet temperature and fuel composition separately. We formulate a theory for predicting the critical values of the heat release parameter at which quasi-stable to unstable and unstable to high-frequency unstable modes take place.  相似文献   

13.
The objective of this investigation was to study the effect of dilution with CO2 on the laminar burning velocity and flame stability of syngas fuel (50% H2–50% CO by volume). Constant pressure spherically expanding flames generated in a 40 l chamber were used for determining unstretched burning velocity. Experimental and numerical studies were carried out at 0.1 MPa, 302 ± 3 K and ? = 0.6–3.0 using fuel-diluent and mixture-diluent approaches. For H2–CO–CO2–O2–N2 mixtures, the peak burning velocity shifts from ? = 2.0 for 0% CO2 in fuel to ? = 1.6 for 30% CO2 in fuel. For H2–CO–O2–CO2 mixtures, the peak burning velocity occurred at ? = 1.0 unaffected by proportion of CO2 in the mixture. If the mole fraction of combustibles in H2–CO–O2–CO2 mixtures is less than 32%, then such mixtures are supporting unstable flames with respect to preferential diffusion. The analysis of measured unstretched laminar burning velocities of H2–CO–O2–CO2 and H2–CO–O2–N2 mixtures suggested that CO2 has a stronger inhibiting effect on the laminar burning velocity than nitrogen. The enhanced dilution effect of CO2 could be due to the active participation of CO2 in the chemical reactions through the following intermediate reaction CO + OH ? CO2 + H.  相似文献   

14.
Energy crises and the preservation of the global environment are placed man in a dilemma. To deal with these problems, finding new sources of fuel and developing efficient and environmentally friendly energy utilization technologies are essential. Hydrogen containing fuels and combustion under condition of the moderate or intense low-oxygen dilution (MILD) are good choices to replace the traditional ones. In this numerical study, the turbulent non-premixed CH4+H2 jet flame issuing into a hot and diluted co-flow air is considered to emulate the combustion of hydrogen containing fuels under MILD conditions. This flame is related to the experimental condition of Dally et al. [Proc. Combust. Inst. 29 (2002) 1147–1154]. In general, the modelling is carried out using the EDC model, to describe turbulence–chemistry interaction, and the DRM-22 reduced mechanism and the GRI2.11 full mechanism to represent the chemical reactions of H2/methane jet flame. The effect of hydrogen content of fuel on flame structure for two co-flow oxygen levels is studied by considering three fuel mixtures, 5%H2+95%CH4, 10%H2+90%CH4 and 20% H2+80%CH4(by mass). In this study, distribution of species concentrations, mixture fraction, strain rate, flame entrainment, turbulent kinetic energy decay and temperature are investigated. Results show that the hydrogen addition to methane leads to improve mixing, increase in turbulent kinetic energy decay along the flame axis, increase in flame entrainment, higher reaction intensities and increase in mixture ignitability and rate of heat release.  相似文献   

15.
The present theoretical investigation is conducted on a micropolar fluid medium channel in the presence of mixed and nonlinear convection with the assumptions of thermal radiation and species reactive agents. The nonlinear governing equations, which describe the micropolar fluid flow and energy, are converted into ordinary differential equations using appropriate similarity variables. With the Runge–Kutta–Fehlberg method, the resultant equations are numerically solved. The physical characteristics of flow restrictions over velocity, microrotation, energy, and concentration profile are plotted and discussed. Further, the impact of several dimensionless parameters on Nusselt and Sherwood numbers is investigated and depicted graphically. In addition to observing flow patterns, contour plots of streamlines are plotted and discussed. It is demonstrated that the dimensionless velocity, temperature, and concentration of micropolar fluid have a maximum value at the center of the channel. However, the microrotation velocity of the micropolar fluid has both maxima and minima. The thermal and solutal properties of micropolar fluid influence heat and mass transport rates, that is, mixed convection and buoyancy parameter boost up the local heat transfer at the surface. Finally, Péclet number and chemically reactive parameters boost up the local mass transfer at the surface.  相似文献   

16.
Effect of hydrogen addition on early flame growth of lean burn natural gas–air mixtures was investigated experimentally and numerically. The flame propagating photos of premixed combustion and direct-injection combustion was obtained by using a constant volume vessel and schlieren photographic technique. The pressure derived initial combustion durations were also obtained at different hydrogen fractions (from 0% to 40% in volumetric fraction) at overall equivalence ratio of 0.6 and 0.8, respectively. The laminar premixed methane–hydrogen–air flames were calculated with PREMIX code of CHEMKIN II program with GRI 3.0 mechanism. The results showed that the initial combustion process of lean burn natural gas–air mixtures was enhanced as hydrogen is added to natural gas in the case of both premixed combustion and direct-injection combustion. This phenomenon is more obvious at leaner mixture condition near the lean limit of natural gas. The mole fractions of OH and O are increased with the increase of hydrogen fraction and the position of maximum OH and O mole fractions move closing to the unburned mixture side. A monotonic correlation between initial combustion duration with the reciprocal maximum OH mole fraction in the flames is observed. The enhancement of the spark ignition of natural gas with hydrogen addition can be ascribed to the increase of OH and O mole fractions in the flames.  相似文献   

17.
Effects of strain rate and preferential diffusion of H2 on flame extinction are numerically explored in interacting premixed syngas–air flames with the fuel compositions of 50% H2 + 50% CO and 30% H2 + 70% CO. Flame stability diagrams mapping lower and upper limit fuel concentrations at flame extinction as a function of strain rate are examined. Increasing strain rate reduces the boundaries of both flammable lean and rich fuel concentrations and produces a flammable island and subsequently even a point, implying that there exists a limit strain rate over which interacting flame cannot be sustained anymore. Even if effective Lewis numbers are slightly larger than unity on the lean extinction boundaries, the shape of the lean extinction boundary is slanted even at low strain rate, i.e. ag = 30 s−1 and is more slanted in further increase of strain rate, implying that flame interaction on lean extinction boundary is strong and thus hydrogen (as a deficient reactant) Lewis number much less than unity plays an important role of flame interaction. It is also shown that effects of preferential diffusion of H2 cause flame interaction to be stronger on lean extinction boundaries and weaker on rich extinction boundaries. Detailed analyses are made through the comparison between flame structures with and without the restriction of the diffusivities of H2 and H in symmetric and asymmetric fuel compositions. The reduction of flammable fuel compositions in increase of strain rate suggests that the mechanism of flame extinction is significant conductive heat loss from the stronger flame to ambience.  相似文献   

18.
With ever-increasing demand for electricity, the production of ash, produced from the coal-fired thermal power plants, and its hazardous impact on the environment, is continuously increasing. This poses a very challenging task of safe handling, proper disposal and utilization of the ash. Several ash utilization schemes, developed and reported by earlier researchers, are being practiced frequently these days. However, these studies do not take into account the quality of ash produced and the changes it may undergo, before it can be used for different applications.A common method of disposing ash is its wet disposal, where the ash is mixed with water to make slurry and is disposed off in the ash ponds or lagoons. Such a disposal system causes ash, and the alkalis present in it, to interact with water over a period of time and may lead to the formation of ash zeolites. As such, it would be interesting to study the effect of this interaction (i.e. formation of zeolites also termed as zeolitization of the ash) on physical, chemical and mineralogical characteristics of the ash. As geotechnical properties of a material depend on these characteristics, the influence of zeolitization on these properties of the ash must also be investigated. Such investigations are essential for the bulk utilization of the lagoon ash, in particular as a fill material, where properties like compaction, consolidation, hydraulic conductivity and its shear strength are very important.In order to simulate such ash–water interaction, controlled laboratory experiments have been conducted on a typical Indian lagoon ash. The present study deals with the details of the effect of zeolitization on physical, chemical, mineralogical and geotechnical characteristics of this ash. Studies were also conducted to explore the possibility of utilization of the lagoon ash, and the zeolitized ash, for various environmental applications viz. retention and removal of heavy metals from the industrial sludge.  相似文献   

19.
20.
As a low-carbon fuel, methane has been used in various engines; however, the studies on its application in hypersonic propulsion are few. Here, oblique detonation waves (ODWs) in methane–air mixtures have been simulated to facilitate methane applications in shock-induced combustion ramjets. The shortcoming of using methane in hypersonic air-breathing propulsions has been presented via examining initiation distance of ODWs. Results demonstrate that ODWs are difficult to be initiated in the methane–air mixture, and similar to normal detonations studies before, this leads to a long initiation length; therefore, methane-fueled ODW is only applicable for high flight Mach number (M0). To broaden the M0 regime, hydrogen has been added to methane to decrease the initiation length. An increasing in the hydrogen percentage leads to the nonlinear decrease of the initiation length, and the initiation structures also vary simultaneously. To elaborate the physical mechanism of the initiation length variation, a theoretical model of the initiation length for fuel blends has been proposed. Meanwhile, the advantages of methane fuel in ODW-based propulsion have been discussed by analyzing on the effects of hydrogen addition on the total pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号