首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以纳米二氧化锡、硝酸钴、脲、葡萄糖和十二烷基硫酸钠为原料,通过水热-碳热还原原位制备锂离子电池Sn-Co-C复合负极材料。通过XRD、SEM、EDS和TEM分析表明,原位生成的Sn-Co合金颗粒分布于纳米或微米尺度的碳球和碳纳米棒内部以及微孔碳基体之中。电化学测试表明,在50 m A·g-1电流密度下,Sn-Co-C复合负极材料首次充放电比容量分别为602.9 m Ah·g-1和867.1 m Ah·g-1,循环100次后其充放电比容量仍分别保持在350.4 m Ah·g-1和356.6 m Ah·g-1,平均每次放电容量衰减率仅为5.1%。优异的电化学性能主要归因于Sn-Co合金颗粒处于纳米或微米尺度的碳球和碳纳米棒内部以及微孔碳基体之中可以改善其导电性,并可以缓解锂电池充放电过程中产生的体积变化所导致的活性物质脱落,提高循环性能和寿命。  相似文献   

2.
以醋酸锰、乙二醇、草酸二水化合物为原料,以聚乙烯吡咯烷酮(PVP)、葡萄糖、间苯二酚为碳源,通过沉淀法辅以热处理,制备出了碳包覆的微纳米结构MnO/C复合材料。利用XRD、SEM、TEM和电化学测试研究MnO/C复合材料的结构、形貌和电化学性能。研究结果表明,以PVP为碳源通过沉淀法制备的MnO/C材料具有微纳米复合结构且材料表面均匀包覆3 nm左右的碳层。该材料作为锂电负极材料在100 m A/g的恒流充放电下循环50次可逆容量达到586 mAh/g,并且经过大电流充放电后仍然表现了优异的结构稳定性。  相似文献   

3.
采用化学沉积法在四边形锌酸钙表面包覆一层金属锡化合物.利用X射线衍射、扫描电子显微镜、电化学阻抗谱、Tafel曲线以及充放电循环(用做锌镍电池的负极材料)等方法,对包覆前后的锌酸钙样品进行表征.结果表明:包覆物化学组成为CaSn(OH)6,该包覆物在锌酸钙的表面分布均匀,沉积较为致密:包覆后的锌酸钙材料具有更好的耐腐蚀性能,且其电化学循环性能良好,经过135次循环后,电池放电容量仍保持设计容量的65.5%.  相似文献   

4.
采用直流电弧放电等离子体技术制备了核壳结构碳包覆氧化镍纳米颗粒,并采用X射线衍射、高分辨透射电子显微镜、X射线能量色散分析谱仪和表面物理吸附仪等测试技术对样品的微观结构进行研究。并利用循环伏安法、恒电流充放电以及交流阻抗等技术研究其作为超级电容器电极材料的电化学性能。结果表明:直流电弧等离子体技术制备的碳包覆氧化镍纳米颗粒具有典型的核壳结构,内核为面心立方结构的氧化镍纳米颗粒,外壳为碳层。颗粒形貌主要为立方体结构,粒度均匀,分散性良好,粒径分布在30~70 nm范围,平均粒径为50 nm,外壳碳层的厚度为5 nm。碳包覆氧化镍纳米颗粒具有较高的比容量和良好的电化学活性。  相似文献   

5.
制备具有优异界面结构和电子/离子传质能力的柔性电极材料是解决高性能电化学活性物质由体积膨胀引起材料粉化和从集流体剥落难题的关键。一种独特的工艺实现了高性能过渡金属氧化物(氧化镍)内嵌碳纤维柔性织物电极的一步制备,所制备的活性物质免于使用导电剂、粘结剂和集流体直接用于锂离子电池负极材料的组装。得益于氧化镍超高的理论比容量,活性碳纤维基体材料低维特性和良好的内应力分散率,制备的复合织物电极展现出良好的电化学性能,一维氧化镍/碳纳米纤维(NiO-CNF)复合柔性电极较纯氧化镍(NiO NF)纤维电极材料具有更卓越的循环耐久性和倍率性能,NiO-CNF和NiO NF在0.5C倍率循环200次分别具有418 mAh·g-1和242 mAh·g-1的可逆容量,良好的电化学性质归因于复合柔性电极的交联结构提供的优异扩散动力学和应力缓冲。  相似文献   

6.
采用热解处理已合成的聚吡咯纳米线实现一维碳纳米纤维的有效合成。在KOH的活化作用下,原始的纤维结构发生变化,获得带状碳纳米结构。对所合成的碳纳米线及碳纳米带进行形貌及结构表征。测试这两种一维碳纳米材料应于于锂离子电池中负极材料的电化学性能。结果表明,一维碳纳米线及一维碳纳米带均表现出较优的循环性能及良好的倍率性能。碳纳米线材料在循环50次后仍保持530 mA·h/g的可逆容量。在前23次充放电循环中,碳纳米带的可逆容量均高于850 mA·h/g,充放电循环到第23次的容量保持率为86%。  相似文献   

7.
采用一种经济有效的非碳纳米包覆技术制备超细SnO_2颗粒包覆α-Fe_2O_3核壳形式的纳米结构材料。这种技术仅涉及两步低温(300℃)熔盐反应。相对于纯的α-Fe_2O_3纳米颗粒,所制备的α-Fe_2O_3@SnO_2纳米核壳颗粒显示出更好的电化学性能。金属氧化物纳米包覆的方法比较容易实施,其热处理温度远低于传统的固相烧结反应和其他碳或金属氧化物纳米包覆方法的热处理温度。这种新的熔盐反应包覆技术也可用于制备其他氧化物纳米包覆结构,并可将这些纳米复合结构材料用于锂离子电池电极材料。  相似文献   

8.
通过镁和氧化亚硅之间的氧化还原反应制备细硅,并采用湿法混料及高温热解法合成了锂离子电池用硅/石墨/裂解碳复合负极材料。利用XRD、SEM、电化学测试考察了复合材料的结构与电化学性能,并结合循环伏安和电化学阻抗技术研究了复合材料的电化学可逆性和动力学性能。结果表明:制备的复合材料首次可逆容量为880 mAh/g,循环40次后为780 mAh/g,容量保持率可达88.6%,该方法显著改善了硅基材料作为锂离子电池负极材料的电化学性能。性能的提高主要归因于纳米结构的硅均匀分散在碳基体中,很好地抑制了充放电过程中的体积效应,同时石墨和裂解碳也充分保证了复合材料良好的导电性。  相似文献   

9.
通过镁和氧化亚硅之间的氧化还原反应制备细硅,并采用湿法混料及高温热解法合成了锂离子电池用硅/石墨/裂解碳复合负极材料。利用XRD、SEM、电化学测试考察了复合材料的结构与电化学性能,并结合循环伏安和电化学阻抗技术研究了复合材料的电化学可逆性和动力学性能。结果表明:制备的复合材料首次可逆容量为880 mAh/g,循环40次后为780 mAh/g,容量保持率可达88.6%,该方法显著改善了硅基材料作为锂离子电池负极材料的电化学性能。性能的提高主要归因于纳米结构的硅均匀分散在碳基体中,很好地抑制了充放电过程中的体积效应,同时石墨和裂解碳也充分保证了复合材料良好的导电性。  相似文献   

10.
<正> 干电池外壳——锌筒,是干电池的负极,同时也是装填正极活性物质的容器。作为负极,要求其材料的化学成分应严格符合国家标准规定的1号锌或2号锌的标准,并应具备良好的耐电化学腐蚀的能力;作为容器,则要求其薄壁筒形结构应有一定的机械  相似文献   

11.
表面建造是提高半导体光催化活性的一种有效方法。本文利用Zn5(CO3)2(OH)6纳米片为基底沉积了BiVO4再通过煅烧成功制备了二维ZnO/Bi3.9Zn0.4V1.7O10.5复合纳米片。通过X射线衍射,透射电镜和元素映像技术表征了所制样品。结果显示随着锌与铋的原子比的上升,ZnO多孔片状的表面逐渐变成Bi3.9Zn0.4V1.7O10.5物质。但其比例高于1:0.02时,在片状Bi3.9Zn0.4V1.7O10.5的区域表面又生长出BiVO4纳米颗粒。漫反射光谱测试显示出ZnO/Bi3.9Zn0.4V1.7O10.5复合物随着锌与铋的原子比的上升其在400~600 nm可见光区的吸收逐渐增强。所制样品在可见光(波长大于420 nm)进行了光催化降解罗丹明B的测试,结果表明在所制样品中,锌与铋的原子比为1:0.0133的ZnO/Bi3.9Zn0.4V1.7O10.5纳米片虽然其可见光的吸收并没有明显增强但却表现出最佳的光催化活性。荧光与电化学测试得出了低含量BZVO的ZnO纳米片可见光催化活性的提高主要是因为表面ZnO/Bi3.9Zn0.4V1.7O10.5异质结构提高了光生载流子的分离与传送。这种二维材料的表面建造有利于光催化的进行。因此,此法可应用于其它二维纳米材料的建造以提高光催化活性。  相似文献   

12.
本文研究了一种纳米硅合金锂离子电池负极材料的微观组织和电化学性能。研究结果表明:该负极颗粒的轮廓基本呈圆形,其内部存在着两个含硅量不同的富铜相,在颗粒表层中两相均为纳米结构。该纳米硅合金负极材料需与石墨负极材料、粘结剂和导电剂按一定比例配合使用,搅拌工艺对其电化学性能也有重要影响。在较理想的情况下,所得负极材料的首效率提高到了90%上下,比容量在100周之后仍高于500mAh/g。电池制作工艺与石墨负极相似,便于应用。  相似文献   

13.
锡基负极材料容量高,安全性好,是目前动力锂离子电池用新型负极材料研究的热点。本文综述了近年来国内外在锂离子电池锡基各类负极材料方面的研究进展。重点介绍了它们的电极反应机理,材料合成方法及电化学性能,分析阐述了它们各自存在的优势和不足,总结了现有材料的改性手段。提出制备炭包覆锡基纳米颗粒的复合材料或者核壳、多孔等特殊结构的纳米级锡基材料,并在负极极片中预先引入金属锂,将是解决问题的最佳手段。指出锡基材料作为锂离子电池负极材料具有良好的商业化发展前景。  相似文献   

14.
利用PVA碳源包覆、HF酸刻蚀和沥青二次包覆方法制备多孔珊瑚状硅/碳复合负极材料,得到沥青含量分别为30%、40%和50%(质量分数)的3种硅/碳复合材料样品。采用XRD和SEM分别对复合材料的组成和形貌进行表征,并采用电化学测试手段对其性能进行测试。结果表明,经二次沥青包覆后,复合材料的电化学性能得到明显提高。当二次包覆的沥青含量为40%时,在100 m A/g的电流密度下,该样品第二次充放电循环的放电容量达到773 m A·h/g,经60次循环后,放电容量仍然保持在669 m A·h/g,其容量损失率仅为0.23%/cycle。因此,调整二次包覆碳含量可明显改善复合材料的循环稳定性。  相似文献   

15.
采用均匀沉淀法制备纳米氧化锌,将其作为添加剂掺杂制备MH/Ni电池正极,研究正极中添加不同质量分数的纳米ZnO对电极电化学性能的影响,初步探讨纳米氧化锌在电极内部的反应机制。结果表明,掺杂后氢氧化镍电极的导电性提高,电化学活性增强,有效地提高了活性物质的利用率,改善了电极反应的传质和传荷条件,使电极中电活性粒子具有合理的分布,因而显示出良好的电化学性能。经过比较,添加质量分数为4%的纳米ZnO电化学性能最佳,在60周和80周时放电容量仍有282和272mAh·g-1,而且放电平台较高。  相似文献   

16.
利用Zn_5(CO_3)_2(OH)_6纳米片为基底沉积了BiVO4再通过煅烧成功制备了二维ZnO/Bi_(3.9)Zn_(0.4)V_(1.7)O_(10.5)复合纳米片。通过X射线衍射,透射电镜和元素映像技术表征了所制样品。结果显示随着锌与铋的原子比的上升,ZnO多孔片状的表面逐渐变成Bi_(3.9)Zn_(0.4)V_(1.7)O_(10.5)物质。但其比例高于1:0.02时,在片状ZnO/Bi_(3.9)Zn_(0.4)V_(1.7)O_(10.5)的区域表面又生长出BiVO_4纳米颗粒。漫反射光谱测试显示出ZnO/Bi_(3.9)Zn_(0.4)V_(1.7)O_(10.5)复合物随着锌与铋的原子比的上升其在400~600 nm可见光区的吸收逐渐增强。所制样品在可见光(波长大于420nm)进行了光催化降解罗丹明B的测试,结果表明在所制样品中,锌与铋的原子比为1:0.0133的ZnO/Bi_(3.9)Zn_(0.4)V_(1.7)O_(10.5)纳米片虽然其可见光的吸收并没有明显增强但却表现出最佳的光催化活性。荧光与电化学测试得出了低含量BZVO的ZnO纳米片可见光催化活性的提高主要是因为表面ZnO/Bi_(3.9)Zn_(0.4)V_(1.7)O_(10.5)异质结构提高了光生载流子的分离与传送。这种二维材料的表面建造有利于光催化的进行。因此,此法可应用于其它二维纳米材料的建造以提高光催化活性。  相似文献   

17.
电沉积乙炔黑 / 锗材料及其性能研究   总被引:1,自引:1,他引:0  
目的提高锂离子电池锗基材料的电化学性能。方法采用电泳和离子液体电沉积制备乙炔黑/锗负极材料,用SEM,Raman和充放电循环等手段表征其结构和性能。结果乙炔黑/锗负极材料在0.2C倍率下循环100次,比容量依然可达到600 m Ah/g以上。结论乙炔黑/锗负极材料的电化学性能明显优于单独锗材料和碳材料。  相似文献   

18.
钛酸锂表面碳包覆改性研究进展   总被引:1,自引:0,他引:1  
张宁  刘永畅  陶占良  陈军 《表面技术》2015,44(1):1-7,33
尖晶石结构的Li4Ti5O12由于电压平台平稳、循环寿命长、"零应变"和安全性高等优点,成为锂离子电池的热门负极材料。然而纯Li4Ti5O12本身为绝缘体,导电性很差,倍率性能不佳,这限制了它的实际应用。研究表明,对Li4Ti5O12表面进行碳包覆可以有效改善其电化学性能。结合最近国内外研究情况,综述了表面碳包覆对Li4Ti5O12负极材料改性的研究进展,分析了不同的碳包覆方法、碳层厚度、碳结构和碳含量对Li4Ti5O12/C复合材料电化学性能的影响,希望促进Li4Ti5O12/C复合电极材料在锂离子电池领域的应用。  相似文献   

19.
锂离子电池碳负极材料的研究现状与发展   总被引:5,自引:0,他引:5  
 综述了近几年碳质锂离子电池负极材料的研究进展,比较了各类碳质材料如石墨、中间相炭微球、高比容量炭化物、石油焦、纳米碳质材料等的优缺点.重点介绍一维纳米碳质材料在锂离子电池负极材料中的应用.  相似文献   

20.
通过对原料二水磷酸铁的预包覆处理,合成碳包覆磷酸铁锂材料。采用了X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段对合成的磷酸铁锂材料结构和微观形貌进行表征,同时考察了其电化学性能。结果表明,对磷酸铁进行碳预包覆能有效提高最终合成产物的电化学性能,在对磷酸铁原料进行1.34%碳含量的包覆后,以此为原料合成磷酸铁锂材料,得到的磷酸铁锂材料含碳量为2.38%时,10C放电容量达到120.7mAh/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号