首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Degradation of amoxicillin (AMX) by nanolepidocrocite chips/H2O2/UV method as a new photo-Fenton like process was investigated and optimized by response surface methodology (RSM). The optimal conditions were initial AMX concentration of 10 mg l−1 and initial H2O2 concentration of 60 mg l−1 at pH of 2 under UV radiation for 120 min. The general photo-Fenton process mechanism was applied to propose a new kinetic model for AMX degradation. According to this model, the reaction constant between AMX and OH was obtained 4.55 × 105 M−1 s−1. Also, nanolepidocrocite showed good catalytic activity even after four successive degradation cycles.  相似文献   

2.
Broadband dielectric spectroscopy results of various ordered and disordered (1 ? x)Pb(Mg1/3Nb2/3)O3–(x)Pb(Sc1/2Nb1/2)O3 (PMN–PSN) ceramics are investigated in the temperature range from 80 K to 300 K and frequency range from 20 Hz to 2 THz. Dielectric dispersion is very broad and in the ferroelectrics case (x = 1, 0.95) consists of two parts: low-frequency part caused by ferroelectric domains and higher frequency part caused by soft mode. The relaxational soft mode exhibits pronounced softening close to phase transition temperature, as it is typical for order–disorder phase transitions. By substituting Sc3+ by Mg2+ in PMN–PSN ceramics relaxation slows down, and for relaxors (x = 0.2) the most probable relaxation frequency decreases on cooling according to Vogel–Fulcher law.  相似文献   

3.
The removal of carbon residue from ZnAl2O4 nanopowders by annealing at 500–800 °C leads to a decrease of specific surface area from 228.1 m2/g to 47.6 m2/g. At the same time, the average crystallite size increased from 5.1 nm to 14.9 nm. In order to overcome these drawbacks, a new solution for removing the carbon residue has been suggested: chemical oxidation using hydrogen peroxide. In terms of carbon removal, a H2O2 treatment for 8 h at 107 °C proved to be equivalent to a heat treatment of 1 h at 600 °C. The benefits of chemical oxidation over thermal oxidation were obvious. The specific surface area was much larger (188.1 m2/g) in the case of the powder treated with H2O2. The average crystallite size (5.8 nm) of ZnAl2O4 powder treated with H2O2 was smaller than the crystallite size (8.2 nm) of the ZnAl2O4 powder annealed at 600 °C.  相似文献   

4.
Plates of Al2O3–YSZ and Al2O3–YAG eutectic composition with a thickness from 0.1 to 1 mm were prepared by directional solidification using a diode laser stack. The melt processed regions of plates exhibited colony microstructure consisting of finely dispersed phases. Due to the curved shape of the melted pool, the growth rate depends on the distance to the surface plate, decreasing from top to bottom. In this way, the microstructure characteristic length changes as a function of the distance to the plate surface. Vickers indentations and piezo-spectroscopy measurements were done on longitudinal and transverse cross-sections of the samples at different depths. From these measurements, we concluded that the Vickers hardness (HV), indentation fracture toughness (KIC) and residual stresses (σh) of the plates were mainly independent from the distance to the surface. The mean values that we obtained in the Al2O3–YSZ plates were HV = 16 GPa, KIC = 4.2 MPa m1/2 and σh = −0.33 GPa, and in the Al2O3–YAG plates were HV = 16 GPa, KIC = 2.0 MPa m1/2, and σh = −0.1 GPa. These values are similar to those found in directionally solidified eutectic rods.  相似文献   

5.
A detailed investigation on photooxidation of linear alkyl benzene (LAB) industrial wastewater is presented in this study. The process analysis was performed by varying four significant independent variables including two numerical factors (initial pH (3–11) and initial H2O2 concentration (0–20 mM)) and two categorical factors (UV irradiation and ozonation). The experiments were conducted based on a central composite design (CCD) and analyzed using response surface methodology (RSM). To assess the process performance, two parameters viz. TCOD removal efficiency and BOD5/COD were measured throughout the experiments. A maximum reduction in TCOD was 58, 53, 51, and 49%, respectively for UV/H2O2/O3, H2O2/O3, UV/O3 and UV/H2O2 processes at the optimum conditions (initial pH of 7, initial H2O2 concentration of 100 mM, and reaction time of 180 min). A considerable increase in BOD5/COD ratio was obtained in the combined processes (0.46, 0.51, 0.53, and 0.55 for UV/H2O2, UV/O3, H2O2/O3 and UV/H2O2/O3, respectively) compared to the single oxidant process (0.35). The results showed that mineralization of the LAB industrial wastewater in neutral pH is more favored than in acidic and basic pH. Gas chromatography–mass spectrometry (GC–MS) was applied to show the fate of organic compounds. In conclusion, the photooxidation process (UV/H2O2/O3, H2O2/O3, UV/O3 and UV/H2O2) could be an appropriate pretreatment method prior to a biological treatment process.  相似文献   

6.
V2O5/Nb2O5 catalysts with various V2O5 contents were prepared by impregnation and characterized by various techniques in detail. Oxidative dehydrogenation of ethane was carried out in a fixed bed quartz reactor at 500–600 °C. XPS analysis indicated a clear enrichment of vanadium on the near-surface-region and UV–vis diffuse reflectance spectroscopy revealed the nature of VOx structures formed. 10 wt.% V2O5/Nb2O5 catalyst has displayed the best performance (X = 28%, S = 38% at 600 °C) due to enrichment of vanadium in the near-surface-region and formation of optimum amount of monomeric/oligomeric VOx species.  相似文献   

7.
The influence of the O2/H2 mole ratio in the gaseous feed and also those of other reaction conditions [viz. concentration of H3PO4 (0–5 mol/dm3), temperature (5–50 °C), gas (H2 and O2) space velocity (5.8–23.4 h?1) and reaction time (0.1–8 h)] on the H2O2 formation in the H2-to-H2O2 oxidation over the Br(1 wt%)–F(1 wt%)–Pd(5 wt%)/Al2O3 catalyst in an aqueous acidic (H3PO4) medium have been thoroughly investigated. The effects of the O2/H2 ratio, reaction temperature and acid concentration on the destruction of H2O2 by its decomposition and/or hydrogenation reactions over the catalyst in the acidic reaction medium have also been studied. The net H2O2 formation (H2O2 yield) over the catalyst passed through a maximum with increasing the acid concentration, the temperature or the O2/H2 feed ratio. However, it decreased markedly with increasing the gas space velocity or the reaction period. The H2O2 decomposition and hydrogenation activities of the catalyst increased appreciably with increasing the reaction temperature and decreased with increasing the acid concentration. The H2O2 destruction during the H2-to-H2O2 oxidation increased with increasing the concentration of H2 (relative to that of O2) due to the increased H2O2 hydrogenation rate over the catalyst. The net H2O2 formation in the H2-to-H2O2 oxidation decreased sharply with increasing the initial amount of H2O2 present in the reaction mixture. The presence of H2O2 and the higher H2/O2 ratios have detrimental effects on the net formation of H2O2.  相似文献   

8.
Lignin has been gasified with a Ni/Al2O3–SiO2 catalyst in sub/supercritical water (SCW) to produce gaseous fuels. XRD pattern at 6θ angle shows characteristic peaks of crystalline NiO, NiSi, and AlNi3, suggesting that Al2O3–SiO2 not only offers high surface area (122 m2 g) for Ni, but also changes the crystal morphology of the metal. 9 mmol/g of H2 and 3.5 mmol/g of CH4 were produced at the conditions that 5.0 wt% alkaline lignin plus 1 g/g Ni/Al2O3–SiO2 operating for 30 min at 550 °C. A kinetic model was also developed, and the activation energies of gas and char formation were calculated to be 36.68 ± 0.22 and 9.0 ± 2.4 kJ/mol, respectively. Although the loss of activity surface area during reuse caused slight activity reduction in Ni/Al2O3–SiO2, the catalyst system still possessed high catalytic activity in generating H2 and CH4. It is noted that sulfur linkage could be hydrolyzed to hydrogen sulfide in the gasification process of alkaline lignin. The stable chemical states of Ni/Al2O3–SiO2 grants its insensitivity to sulfur, suggesting that Ni/Al2O3–SiO2 should be economically promising for sub/supercritical water gasification of biomass in the presence of sulfur.  相似文献   

9.
The reaction of chromium(III) chloride, 3-hydroxy-2-naphthoic acid (3-HNA) and ethylenediamine (en) led to the formation of complex [Cr(3-HNA)(en)2]Cl · H2O · CH3OH, Bis(ethylenediamine-κ2N,N′)(3-hydroxy-2-naphthoic acid-κ2O,O′) chromium(III) monochloride monohydrate monomethanol. The kinetics of transfer of Cr(III) from the title compound to the low-molecular-mass chelator EDTA and to the iron-binding protein apoovotransferrin (apoOTf) were carried out by means of UV–Visible (UV–Vis) and fluorescence spectra in 0.01 M Hepes at pH 7.4. The second-order rate constants were calculated, respectively. The results show that Cr(III) can be transferred from the complex to apoovotransferrin.  相似文献   

10.
Fine-grained Nd3+:Lu2O3 transparent ceramic was developed by a two-step sintering method in flowing H2 atmosphere at T1 = 1720 °C for 15 min and T2 = 1620 °C for 10 h. The initial nanopowders were synthesized by a wet chemical processing with a uniform particle size of about 40 nm. The average grain size of the obtained 3 at.% Nd3+:Lu2O3 ceramic was 406 nm, which is ∼150 times smaller than the coarse-grained ceramic by normal H2 sintering. The emission intensity of the fine-grained transparent ceramic is 3 times of its coarse-grained counterpart, indicating higher Nd concentration without serious quenching in fine-grained transparent ceramic is possible, which agreed well with the prediction of an atomistic modeling work with YAG. EXAFS research demonstrated that with decreasing grain size, higher degree of disorder factor of the local environment of doped Nd atoms was discovered.  相似文献   

11.
A novel organic–inorganic hybrid material, [Cu(enMe)2(H2O)][{Cu(enMe)2}{Cu(enMe)2(H2O)W12O40(H2)}] · nH2O (n = 0.33, enMe = 1,2-diaminopropane), has been prepared under mild hydrothermal conditions and characterized by single-crystal X-ray diffraction, IR and magnetic susceptibility measurements. It is revealed that the one-dimensional [{Cu(enMe)2}{Cu(enMe)2(H2O)W12O40(H2)}]2− chain in the structure shows a unique sinusoidal ruffling, which is constructed from decorated Keggin clusters and {Cu(enMe)2}2+ bridging groups through sharing one terminal and one doubly-bridging oxygen atoms of a cluster. The magnetic measurements show that the compound possesses well-separated Cu2+ centers. It was indicated that the hybrid exhibits a good catalytic activity in H2O2 decomposition.  相似文献   

12.
《Ceramics International》2017,43(2):1809-1818
The densification and biocompatibility of sintered 3.0 mol% yttria-tetragonal zirconia polycrystal (3Y-TZP) ceramics, with X wt% Fe2O3 and 5.0 wt% mica powders (denoted by 3Y-TZP: X-5.0 wt% mica) have been studied. When the pellets of 3Y-TZP: X-5.0 wt% mica were sintered at 1300 °C for 1 h, the relative shrinkage increases from 19.20–19.43% with the X increased from 0.3 to 1.0. The relative shrinkage of pellets containing 1.0 wt% Fe2O3 (X=1.0) increased from 19.43–19.59% when sintering temperatures were raised from 1300 °C to 1450 °C. X-ray diffraction results show that the pellets of 3Y-TZP: X-5.0 wt% mica sintered at 1400 °C for 1 h only contained single phase of tetragonal ZrO2 (t-ZrO2). When the sintering temperature was higher than 1400 °C, the Vickers microhardness was greatest in the pellets with X=0.5. Within pellets with the same Fe2O3 content, the dominant wavelength (λd) was only slightly different for pellets sintered at 1300 °C and those sintered at 1450 °C. The results of the materials were evaluated in vitro cytotoxicity tests reveals that the powders and sintered pellets are safe materials. The oral mucosa irritation tests did not find erythema or histopathological change including normal epithelium, and was free from leucocyte infiltration, vascular congestion and oedema.  相似文献   

13.
Non-conventional MgF2 supported V2O5 catalysts with different vanadia contents (2–15 wt.%) were prepared by impregnation (using NH4VO3), characterised and catalytically evaluated for selective ammoxidation of 3-picoline to nicotinonitrile. Oxygen and ammonia chemisorption uptakes increased continuously from 60 to over 600 μmol g?1 and 275 to >750 μmol g?1, respectively, with rise in V2O5 proportion indicating that the redox as well as acidic sites are increasing with increase in V2O5 content. Thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) analysis revealed endothermic as well as exothermic thermal effects mainly due to liberation of water and ammonia, and also due to structural changes. XRD patterns showed the formation of crystalline V2O5 in the fresh solids having 8 wt.% V2O5 and above and NH4VO3 phase in the spent samples. The conversion of 3-picoline is observed to increase continuously with increase in V2O5 loading. However, the selectivity of nicotinonitrile is found to be independent on conversion of 3-picoline. The catalyst with the highest V2O5 loading (15.7 wt.%) displayed the best activity (X > 90%) and selectivity (S > 95%) compared to all other catalysts of this series. The 3-picoline conversion of 10% at 548 K is increased to almost 100% with rise in temperature to 663 K. Increase in 3-picoline feed rate and NH3: 3-picoline ratio exhibited an inhibiting effect on the conversion, while an increase in air: 3-picoline ratio has no significant influence on the performance.  相似文献   

14.
An organic–inorganic hybrid 1D helical chain arsenomolybdate {[Cu(en)2][Cu(en)(H2O)][(Cu(en)2(H2O)] [AsIIIAsVMo9O34)]} · 2H2O (1) (en = ethylenediamine) has been hydrothermally synthesized and characterized by elemental analyses, IR, UV and CD spectrum, powder X-ray diffraction, TG-DTA and single-crystal X-ray diffraction. The asymmetric unit of 1 consists of a monocapped trivacant Keggin [AsIIIAsVMo9O34]6  subunit, a pendant [Cu(en)2(H2O)]2 + cation, a pendant [Cu(en)(H2O)]2 + cation, one bridging [Cu(en)2]2 + cation and two lattice water molecules. It should be noted that 1 illustrates a one-dimensional (1D) helical chain assembled by {[Cu(en)(H2O)][(Cu(en)2(H2O)][AsIIIAsVMo9O34)]}2  clusters and [Cu(en)2]2 + linkers.  相似文献   

15.
A series of Ru/Sm2O3–CeO2 catalysts were prepared by using a co-precipitation (CP) method and characterized by XRD, BET, SEM, H2-TPD-MS, H2-TPR and CO chemisorption. The activity test shows that ammonia concentration of the catalyst with 7% Sm is 13.4% at 10 MPa, 10,000 h 1, 425 °C, which is 21% higher than that of Ru/CeO2. Such high catalytic activity was due to three effects: the morphology changes of catalyst, electrodonating property of partially reduced CeO2  x to Ru metal and the property of easily hydrogen desorption derived from the presence of Sm3+ in ceria.  相似文献   

16.
Redox behavior and oxidation catalysis of HnXW12O40 (X = Co2 +, B3 +, Si4 +, and P5 +) Keggin heteropolyacid catalysts were investigated. Successful formation of HnXW12O40 catalysts was confirmed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Reduction potentials of HnXW12O40 catalysts were determined by electrochemical measurements. First electron reduction potential of HnXW12O40 catalysts decreased with increasing overall negative charge of heteropolyanion. HnXW12O40 catalysts were then applied to the liquid-phase oxidation of benzaldehyde to benzoic acid. Yield for benzoic acid increased with increasing first electron reduction potential.  相似文献   

17.
A new paradodecatungstate-B compound decorated by transition metal copper, Na2Cu5(H2O)24(OH)2[H2W12O42]·10H2O (1), has been synthesized by convenient aqueous solution method and structurally characterized by single-crystal X-ray diffraction, IR spectrum, elemental analysis and TGA. The compound crystallizes in the triclinic P-1 space group with a = 10.7140(8) Å, b = 12.9476(9) Å, c = 13.6696(10) Å, α = 73.56°, β = 75.73°, γ = 67.69°, V = 1661.8(2) Å3 and Z = 1. In compound 1, polyanion of [H2W12O42]10  acts as a dodecadentate ligand that links copper and sodium cations, forming a remarkable three-dimensional framework. The experiment of antitumor activities in vitro shows that the title compound exhibits remarkable inhibitory actions on human cervical carcinoma HeLa cells, ovarian carcinoma SKOV-3 cells, hepatoma HepG2 cells and neuroblastoma SHY5Y cells.  相似文献   

18.
Au/Al2O3 catalyst was investigated with respect to its activity for low-temperature CO oxidation. The activity changes of the catalyst were examined after separate treatment in the following different atmosphere: (i) O2 + N2 + CO; (ii) O2 + N2 heated above 100 °C and (iii) O2 + N2 + H2O vapor. The results show that each of the treatments above may deactivate the catalyst to the different degree. The deactivation by CO oxidation is mainly due to the accumulation of carbonate-like species on the catalyst surface. The addition of H2O vapor may inhibit the deactivation effectively. The removal of hydroxyl groups at active sites during heating may be responsible for the deactivation by thermal treatment. These two kinds of deactivations are reversible. The irreversible deactivation by H2O vapor treatment is mainly caused by the growth of gold particles size.  相似文献   

19.
Fully densified B6O materials with Al2O3/Y2O3 sintering additives amounts systematically varied between 0 and 15 vol.% and Al2O3/(Al2O3 + Y2O3) molar ratios of 0.05–1 were prepared by FAST/SPS and HIP at sintering temperatures between 1725 °C and 1900 °C. Their densification and microstructure were correlated with measured mechanical properties. The addition of low additive amounts in the range of 2–3 vol.% was found to increase the fracture toughness and strength from 2.0 MPa m1/2 (SEVNB) and 420 MPa for pure B6O to about 3.0 MPa m1/2 and 540 MPa, but it had no effect on the hardness, which remained at a high level of 30–36 GPa (HV0.4). Higher additive contents did not yield a further improvement in the toughness but resulted in a reduction in hardness and strength.  相似文献   

20.
A novel transition-metal (TM) complex based on Lindqvist polyoxoniobate K10[(Nb6O19)CrIII(H2O)2]2·28H2O (1) has been synthesized by a new two-pot synthesis strategy and structurally characterized by single crystal X-ray diffraction analysis, IR spectrum, UV–vis spectroscopy, XRPD and TG analysis. Compound 1 crystallizes in the C2/m space group with a = 32.143(19) Å, b = 10.030(6) Å, c = 12.878(8) Å, β = 110.611(9)°, and V = 3886(4) Å3. X-ray structure analysis reveals that polyanion [(Nb6O19)CrIII(H2O)2]210  (1a) represents the first example of two nuclear dimeric polyoxoniobate, in which two Lindqvist anions [Nb6O19]8 are sandwiched by two {CrIII(H2O)2} groups. Further, 1 exhibits photocatalytic H2 evolution activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号