首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
中国原子能科学研究院目前正在研制用于硼中子俘获治疗(BNCT)的强流质子回旋加速器,该加速器设计引出能量14 MeV、质子束流强大于1 mA。相比引出流强为400 μA的PET回旋加速器,BNCT强流质子回旋加速器对中心区相位接收度和轴向聚焦的要求更高。为实现mA量级的束流的加速和引出,BNCT强流质子回旋加速器采取了增加负氢束流注入能量、增大磁铁镶条孔径、使用用于增大Dee盒头部张角的阶梯状结构及调整加速间隙的入口和出口高度等一系列中心区结构优化设计,有效地提高了中心区的相位接收度,改善了轴向电聚焦。在新的离子源注入能量下通过数值计算得到实测场下的轴向电聚焦和间隙高度的关系,选取合适的间隙高度获得最佳的轴向聚焦,从而确定了mA量级束流的注入和加速的中心区结构。同时在设计中考虑空间电荷效应的影响,计算了不同流强下的束流尺寸变化。中心区结构在实测磁场下的优化设计计算结果表明,BNCT强流质子回旋加速器中心区的束流对中好于0.5 mm,相位接收度大于40°,中心区最高可接收流强3 mA。目前,新的中心区结构已进入机械加工阶段。  相似文献   

2.
正等时性是衡量一台回旋加速器的关键指标,需通过磁场测量评估。230 MeV回旋加速器要求测量的磁场范围为径向0~85cm、角向0°~360°的中心平面,最高磁场强度约为4.0T,要求的磁场测量精度为5×10~(-5)。计划采用感应线圈探头磁能量法进行磁场测量。目前,230 MeV超导回旋加速器磁场测量系统的主要进展如下。1完成磁场测量机械装置的研制测磁仪机械装置用于支撑测量设备和其他硬件,如图1所示。装置实现NMR探头伸入中心平面,获  相似文献   

3.
为满足100 MeV回旋加速器磁场测量要求,设计研制了一套测磁仪自动化控制装置。该装置采用周向与径向相结合的运动方式,对目标点磁场进行测量。周向运动采用开环控制,在软件上通过算法实现间接闭环控制,整个测磁过程,只需完成1次周向运动,缓解了由硬件原因带来的周向定位震荡问题。径向运动基于光栅位置反馈,由运动控制器实现自动闭环控制,该方案使角度精度达到±5″以内,径向精度达±5 μm,达到并优于理论设计要求,解决了中能回旋加速器磁场测量时间较长、精度低的难题,对100 MeV回旋加速器的束流强度及品质的提高有重要意义。  相似文献   

4.
<正>磁场等时性和聚焦性是衡量230 MeV超导回旋加速器性能优劣的关键指标之一,其判断标准必须通过测量加速器中心平面磁场来确定。为得到准确可靠的磁场测量数据,本文设计了一套能同时搭载霍尔探头和感应线圈两种测量方式的磁场测量装置。该套磁场测量装置包括核磁共振探头驱动机构、角向驱动及定位机构、径向驱动及定位机构、搭载霍尔探头和感应线圈的滑动机构、测量臂和  相似文献   

5.
正磁场测量与垫补系统是230 MeV超导质子回旋加速器主磁铁系统的子系统之一。目前,230 MeV超导质子回旋加速器主磁铁、线圈、配套电源均已完成加工,磁场测量工作即将展开。磁能量法是加速器中常用的磁场测量方法。磁能量法原理简单,但误差来源较丰富,需要对感应线圈探头的面积进行标定。利用回旋加速器研究设计中心临时厂房的标准C型二极铁提供高均匀度磁场,校准时利用NMR测量探头进行磁场标定。通过多次校准,经计算后取平均值可得到感应线圈的面积与厂家所  相似文献   

6.
正CYCIAE-14是一台医用回旋加速器。由于癌症已成为人类最难对付的疾病之一,在发达国家,甚至已成为人类死亡的笫一杀手。因此,自1936年由Locher提出BNCT的思想以来,BNCT在美国、欧洲、日本、澳大利亚等地得到了长期的研究,特别是在20世纪90年代中期,取得了明显的进展。在国内,中核集团周永茂院士和天坛医院王忠诚院士于本世纪初跟踪国际创新实践,领导了国内第一座BNCT设施的建设,目前建造工作已经完成,在原子能院安装、调试。在加速器运行与调试的过程之中,需要利用FC筒对离子源注入线、剥离靶、引出口等位置的束流强进行精准的  相似文献   

7.
紧凑型回旋加速器中一种等时性磁场垫补算法   总被引:1,自引:1,他引:0  
结合中国原子能科学研究院100 MeV回旋加速器中心区实验台架主磁铁镶条的垫补,发展了一种改进的多元线性回归磁场垫补算法.基于磁场测量系统实测的实验台架中心平面上的磁场分布以及有限元软件模拟数值计算的磁场,实现了这种改进的多元线性回归磁场垫补算法.该算法可适用于紧凑型回旋加速器中等时性磁场的垫补,以使所垫补的磁场满足回旋加速器束流动力学设计的要求.  相似文献   

8.
主磁铁举升系统是100MeV回旋加速器的重要设备之一,在100MeV回旋加速器的安装、磁场测量、真空检漏、束流调试、检修维护等过程中,举升系统具有重要作用。目前国际上的大型紧’凑型回旋加速器主要采用两种类型的举升装置,一类是采用螺旋丝杠升降装置,如加拿大TRIUMF、意大利LNS、瑞士PSI的回旋加速器等,另一类是采用液压举升装置,如比利时IBA的235MeV质子回旋加速器。CYCIAE一100的举升系统参数为:设计举升重量180t,举升高度1500mm。  相似文献   

9.
100MeV回旋加速器中心区实验台架是用于加速负氢离子的紧凑型回旋加速器装置,它的中心平面磁场分布范围跨度较大,要求作为检测磁场分布和磁场垫补惟一手段的磁场测量应具有很高的精度、稳定性和重复性。  相似文献   

10.
在回旋加速器中心区的设计中,轴向运动关心的主要问题和径向运动非常不同。这基本上源于在回旋加速器中心处轴向聚焦频率几乎为零的事实,然而径向振荡频率值约为1。回旋加速器中,在起始的几圈内等时性磁场提供的轴向聚焦接近于0,为加强磁场聚焦在等时场上设计一小的凸起磁场,可提供正的磁场梯度即轴向聚焦,属于弱聚焦,且该磁场带来的另一不利的效应是造成滑相。  相似文献   

11.
李德明 《核技术》2001,24(12):133-139
介绍了在超灵敏小型回旋加速器质谱计上进行的磁场测量与磁场非电垫补工作中计算机的应用,包括磁场测量控制,磁场测量后处理,磁场激励控制和磁场非电垫补的计算及数据处理工作,并给出磁场非电垫补所达到的结果。  相似文献   

12.
<正>中国原子能科学研究院正在开展PET医用小型回旋加速器商品机研究工作。~(11)C放射性同位素常用于PET-CT成像技术,PET-CT成像技术在人体科学研究中,特别是在脑科学研究中的应用及在心脑血管、肿瘤、精神病学等临床诊断中的应用早已被医学界认可。本文介绍PET医用小型回旋加速器的专用~(11)C同位素药物生产靶系统。  相似文献   

13.
100 MeV紧凑型回旋加速器主磁铁的几何结构十分复杂,但为了形成加速器束流动力学所要求的磁场分布,本文对初步设计的磁铁进行必要的简化。综合采用各种适当的三维有限元网格剖分技术,对该磁铁的磁场进行数值分析,计算精度满足加速器物理设计的要求。  相似文献   

14.
阐述了一种回旋加速器主磁铁的CAE方法,基于该方法在VAX—11/780上所形成的CAE系统,具有可移植性好的特点,目前已成功地移植到PC—386微机上。智能化的CAD工作,在专家经验知识库的帮助下,使一般的设计者,也能得到高水平的磁铁结构;磁场分析基于多次考验过的磁场数值计算程序,束流动力计算经过实际考验;CAM工作是根据现有数控车床的具体要求,将设计结果转换成必要的加工数控数据,并能根据实际测磁结果,以形成等时性磁场为目标,计算出叶片修改量并输出数控数据,指导整个磁铁加工过程。应用该CAE系统设计的回旋加速器主磁铁,结构与目前国际上回旋加速器的结构十分接近,运行功耗有所下降。  相似文献   

15.
李德明 《核技术》2001,24(Z1):133-139
介绍了在超灵敏小型回旋加速器质谱计上进行的磁场测量与磁场非电垫补工作中计算机的应用.包括磁场测量控制、磁场测量后处理、磁场激励控制和磁场非电垫补的计算及数据处理工作,并给出磁场非电垫补所达到的结果.  相似文献   

16.
正为了测量100 MeV回旋加速器实际输出质子束流的能量,回旋加速器研究设计中心采用了Physikalisch-Technische Werkst tten(PTW)公司生产的水体模剂量测量系统(以下简称水箱)测量质子束流在水中的深度剂量曲线,确定布拉格峰位置。测量采用的是100 MeV回旋加速器南向单粒子效应束流线和单粒子效应实验台架。该束流线是一条水平方向固定的束流线,因此输出的质子束流为水平方向固定束。水箱的侧面有一个入射窗,入射窗处安装1个参考探测器。束流线与  相似文献   

17.
<正>中国原子能科学研究院正为中国科学院空间科学与应用研究中心建造一台50 MeV紧凑型回旋加速器CYCIAE-50。CYCIAE-50通过螺旋偏转板轴向注入30keV的负氢离子束,剥离引出可得到能量30~50 MeV、流强10μA的质子束。CYCIAE-50主磁铁采用直边扇结构,包括4对磁极,中心区磁场为0.9T。加速模式为四次谐波加  相似文献   

18.
紧凑型的回旋加速器的磁场分布范围跨度较大,且对磁场测量的精度要求较高,磁场的测量误差直接影响到后续主磁铁的镶条垫补。磁场测量系统主要用于主磁铁中心平面上磁场分布的测量,对主磁场的测量精度及测量点相对位置精度要求极高,磁场偏离理想场的微小误差对粒子束流的运动有相当大的影响。磁场测量点的选取采用极坐标,最后给出磁场值的极坐标点分布结果。  相似文献   

19.
北京放射性核束装置(BRIF)于2004年已在中国原子能科学研究院正式启动。该装置将提供强流质子束和放射性核束(RIB)用于基础和应用研究,如中子物理、核结构、材料科学与生命科学、医用同位素生产等。在该工程中,100MeV强流质子回旋加速器(CYCIAE-100)被选为驱动加速器,它提供能量为75~100MeV、流强为200μA的质子束。2005年100MeV回旋加速器各系统的初步设计,包括束流动力学、磁铁、高频等都已完成。与回旋加速器设计相关的实验验证工作也已深入展开。选择紧凑型磁铁结构,采用加速H-、剥离引出的技术路线,将使得加速器体积小、造价…  相似文献   

20.
中国原子能科学研究院(CIAE)自1958年首台回旋加速器成功出束以来,已经历了60余年的回旋加速器创新与发展,并由此带动了我国核科学技术基础研究和应用技术的发展。本文在简要回顾回旋加速器前30年发展历程的基础上,重点阐述后30年围绕紧凑型回旋加速器的科技创新和应用,主要包括100 MeV强流质子回旋加速器、医用小型回旋加速器、质子治疗超导回旋加速器及高功率等时性圆型加速器等多种先进的质子加速器研发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号