首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以Ti粉、C粉、Fe粉为原料,利用氩弧熔覆技术在Q235钢表面原位合成了TiC增强Fe基复合涂层,分析了涂层的显微组织和物相,测定了涂层的硬度。结果表明:复合涂层与基体界面无气孔、裂纹,呈冶金结合;熔覆层组织由树枝晶、等轴晶组成,TiC主要分布于晶粒内和晶界处;涂层显微硬度随TiC含量的增加而增大。  相似文献   

2.
激光熔覆TiC增强铁基耐磨涂层组织结构的研究   总被引:1,自引:0,他引:1  
采用钛铁和石墨作预置粉末,利用激光熔覆技术在碳钢基体上制备TiC增强铁基耐磨复合涂层。采用X射线衍射仪、扫描电镜及能谱分析仪对涂层物相组成和显微组织进行研究,并利用显微硬度计测试了涂层硬度。结果表明,TiC增强相通过熔池冶金反应原位生成,随着涂层中Ti、C原子比例的不同,涂层增强相含量和物相结构发生相应演变,所得TiC呈枝晶状和花瓣状均匀分布于涂层中。与被强化基体相比,熔覆层的硬度得到显著提高。  相似文献   

3.
目的 在钛合金表面制备陶瓷相增强复合耐磨涂层。方法 采用等离子弧熔覆技术,在Ti6Al4V钛合金表面制备了原位自生TiB2、TiC、CrB陶瓷相增强镍基耐磨涂层。采用X射线衍射仪、扫描电镜、能谱仪检测了涂层的物相组成、组织组织以及微区化学成分,采用显微硬度计测试了涂层的硬度。结果 涂层靠近熔合线区域由Ni-Ti树枝晶及枝晶间的共晶组成,在涂层的中上部,大量原位增强相分布于镍基固溶体基体之中。在熔覆过程中,钛合金基材中的Ti元素同熔覆粉末中的B、C元素发生原位冶金反应形成TiB2、TiC增强相,CrB增强相为Ni基熔覆粉末中Cr、B元素反应形成,增强相的形态由各自的晶体结构及熔池凝固热力学与动力学条件决定。涂层的显微硬度得到显著提高,最高达1037HV0.2。结论 采用等离子弧熔覆技术,利用熔池内Ni-Cr-Ti-B-C合金体系的原位冶金反应,可以在钛合金表面制备原位自生TiB2、TiC、CrB增强镍基复合耐磨涂层。同Ti6Al4V基材相比,由于涂层具有大量增强相分布于镍基固溶体的组织特征,其显微硬度得到了显著提高。  相似文献   

4.
以钛铁粉和碳的前驱体(蔗糖)为原料通过前驱体碳化复合技术制备了Ti-Fe-C等离子熔覆复合粉末,并通过等离子熔覆技术在普通低碳钢表面成功地原位合成了TiC/Fe陶瓷金属复合涂层.着重研究了不同C/Ti原子比对等离子熔覆TiC/Fe复合涂层的相组成、显微结构和硬度的影响.结果表明,前驱体碳化复合技术制备的Ti-Fe-C系等离子熔覆复合粉末中C/Ti原子比是影响涂层相组成、显微结构和硬度的关键因素.C/Ti原子比不同,涂层的相组成和硬度不同;随着C/Ti原子比增大,涂层中TiC团聚富集区增大,涂层的孔隙率也随之增大.  相似文献   

5.
杜海霞  徐峰  李文虎  唐玲 《热加工工艺》2012,41(18):145-146,150
利用氩弧熔覆技术,以Ti粉、C粉、Fe粉为原料在Q235钢基体表面上原位合成高硬度复合涂层.采用金相显微镜观察分析涂层显微组织,利用洛氏硬度仪测试熔覆层的硬度.结果表明:熔覆层组织由树枝晶、等轴晶组成,TiC主要分布于晶粒内和晶界处,涂层显微硬度随TiC含量的增加而增大.  相似文献   

6.
以钛和石墨为原料,采用预置粉末结合高频感应加热熔化的方法在Ti6Al4V基体表面制备了原位自生TiC增强Ti基复合涂层,研究了涂层微观结构、物相构成、纳米力学性能及显微硬度。结果表明,感应熔覆钛基复合涂层表面平整,内部无裂纹和孔隙,与基体形成了冶金结合;熔覆过程中Ti与石墨充分反应生成TiC增强相,涂层基质相由α-Ti和少量β-Ti构成;TiC在涂层内分布均匀,其纳米压痕硬度和弹性模量高达22和280 GPa,较Ti6Al4V基体分别提高18和130 GPa,因此使复合涂层具有较高的硬度。  相似文献   

7.
以B4C和Ni60A粉末为预涂材料,采用氩弧熔覆技术,在Ti6Al4V合金表面原位合成TiC与TiB2增强相增强钛基复合材料涂层.运用XRD,SEM等分析手段研究了复合涂层的显微组织,利用显微硬度仪测试了复合涂层的显微硬度并用磨损试验机分析了其在室温干滑动磨损条件下的耐磨性能.结果表明,熔覆层组织主要由TiC和TiB2组成,TiC颗粒和TiB2颗粒弥散分布在基体上,TiC颗粒的尺寸为2~3μm,而呈长条状的TiB2颗粒尺寸为3~5μm.显微硬度和耐磨性测试结果表明,该复合涂层显微维氏硬度高达1200MPa左右,复合涂层的耐磨性能比Ti6Al4V基体提高约20倍.  相似文献   

8.
目的提高截齿的耐磨性,延长其使用寿命。方法利用氩弧熔覆技术在35CrMnSi钢表面制备TiC增强镍基复合涂层,分析涂层的显微组织和物相组成,测试涂层在室温下的显微硬度和耐磨性,并分析磨损机制。结果氩弧熔覆涂层的显微组织致密均匀,涂层与基体呈冶金结合,主要由TiC,γ-Ni,M23C6等物相组成。TiC颗粒呈块状,尺寸为1~2μm,弥散分布在涂层中。涂层硬度和耐磨性与(Ti+C)含量有关,熔覆粉末中(Ti+C)质量分数为20%时,涂层最高硬度可达1190HV,耐磨性达到基体的7.5倍。结论熔覆涂层的显微硬度较基体有显著提高。在室温冲击载荷作用下,熔覆涂层的主要磨损机制为显微切削磨损,可大大提高基体材料的耐磨性能。  相似文献   

9.
以Ti,B4C,Y2O3和Ni60A粉末为原料,利用氩弧熔覆技术在Q235钢基材表面成功制备出镍基增强相复合涂层,运用 XRD,SEM等分析手段研究了复合涂层的显微组织,利用显微硬度仪测试了复合涂层的显微硬度,并用磨损试验机分析了其在室温干滑动磨损条件下的耐磨性能. 结果表明,复合涂层与基体界面无气孔、裂纹,呈冶金结合. 复合涂层由TiC,TiB2,Cr23C6和γ-Ni组成. 稀土加入改变了TiC和TiB2的长大形态,呈颗粒状均匀、细小的分布在熔覆涂层中. 显微硬度和耐磨性测试结果表明,稀土加入后提高其显微硬度和磨损性能.  相似文献   

10.
在45钢表面激光熔覆原位合成TiC颗粒增强Fe基复合涂层。利用扫描电镜、能谱仪和X射线衍射仪对TiC/Fe复合涂层的显微组织、合金成分以及物相进行分析,测试了熔覆层的显微硬度和耐磨性能。结果表明,当(Ti+C)的含量在复合粉末中的比例达到15%时,熔覆层生成了少量的TiC颗粒,其形状呈多面体和花瓣状,直径为1~5μm,长度为3~5μm,TiC增强相组织中含有Fe、Cr等元素,而不是单纯的二元碳化物。由于少量TiC颗粒的团聚现象,造成TiC激光熔覆层的显微硬度低于Fe基熔覆层,但TiC激光熔覆层磨损性能优于Fe基熔覆层。  相似文献   

11.
目的获得高质量等离子熔覆铁基涂层的优化成分。方法以Fe901、Ti、B_4C粉为原料,采用反应等离子熔覆法在Q235钢基体上原位合成铁基涂层,研究了反应物(Ti+B_4C)/Fe901质量比(15/85、25/75和35/65)对涂层中强化相的形成、界面结合情况、显微组织结构以及硬度的影响。结果铁基涂层均与基体呈冶金结合。(Ti+B_4C)/Fe901质量比较大时,会使界面结合处质量下降。(Ti+B_4C)/Fe901比为15/85时,涂层主要由(Fe,Cr)固溶体、TiB2、TiC、Ti8C5、Fe3C和Fe B相组成。增大(Ti+B_4C)/Fe901比,不会导致新相形成,但可以抑制Fe B析出,涂层中的TiC通过多步反应而形成。涂层显微硬度随(Ti+B_4C)/Fe901比增大,整体呈上升趋势。(Ti+B_4C)/Fe901比不大于25/75时,涂层显微组织较为均匀,显微硬度沿层深方向变化较平稳;进一步增大(Ti+B_4C)/Fe901比,涂层显微组织和硬度均呈现梯度分布,涂层上部硬度与下部硬度差值可达630HV0.1。结论通过调控主要增强相的反应物成分含量,可使等离子熔覆铁基涂层的显微组织和硬度呈现出梯度分布特征或较好的均匀性,从而满足不同的实际应用需求。  相似文献   

12.
采用等离子熔覆技术在AZ91D镁合金表面熔覆了NiAl/Ti+C复合粉末,制备出原位合成TiC增强的NiAl金属间化合物基复合涂层.采用X射线衍射(XRD)、扫描电镜(SEM)、能谱仪(EDS)研究了复合涂层的物相和组织,对复合涂层的显微硬度和耐蚀性进行了测定.结果表明:复合涂层主要由NiAl金属间化合物和分布其上的块状TiC陶瓷相组成;在金属间化合物和陶瓷相的作用下,熔覆层具有高的硬度和耐蚀性能.  相似文献   

13.
把石墨粉末预涂在钛合金表面上,利用氩弧熔覆技术成功制备出原位自生TiC增强的金属基复合涂层。利用扫描电镜、X射线衍射仪和能谱仪分析了熔覆涂层的显微组织,探讨了增强相TiC的生成机制;利用显微硬度仪测试了复合涂层的显微硬度并用磨损试验机考察了其在室温干滑动磨损条件下的耐磨性能。结果表明,氩弧熔覆涂层组织均匀致密,原位自生TiC呈树枝晶和细碎的条状均匀地分布于整个涂层中;由TiC增强的复合涂层明显地改善了钛合金的表面硬度.平均硬度约为700HV0.2且沿层深方向呈梯度分布;涂层在室温干滑动磨损条件下的耐磨性明显优于基体,约为钛合金的10.5倍.  相似文献   

14.
原位自生TiC颗粒增强金属基复合材料涂层的组织与性能   总被引:5,自引:2,他引:5  
以Ni60A、Ti粉和C粉为原料,采用高频感应熔覆技术。在16Mn钢表面原位合成了TiC颗粒增强镍基复合材料涂层。借助扫描电镜、透射电镜、X射线衍射仪、显微硬度计对复合涂层的组织、结构和性能进行了分析。结果表明,熔覆层与基体呈冶金结合,无裂纹、气孔等缺陷;熔覆层组织由γ-Ni、M23C3、TiC组成,TiC大部分呈方块状,少部分呈花瓣状,颗粒尺寸为0.5-1.0μm,均弥散分布于熔覆层中,涂层的显微硬度可达980-1000HV0.2。  相似文献   

15.
等离子熔覆原位合成TiC陶瓷颗粒增强复合涂层的组织与性能   总被引:19,自引:3,他引:19  
利用等离子熔覆技术,在廉价的碳钢表面原位合成了TiC/Ni基复合材料涂层.借助金相显微镜、扫描电镜、X射线衍射仪、显微硬度计对复合涂层的组织、结构、性能进行了测试.结果表明:当Ti C含量为10%~20%时,熔覆层成形良好,与基体呈冶金结合,无裂纹、气孔等缺陷;熔覆层的组织为γ-Ni枝晶、M23C6、CrB及原位合成的TiC陶瓷颗粒,TiC大部分呈球状,少量呈方块状,尺寸为1~2 μm,靠近熔覆层底部的TiC颗粒比近表层的为小,均弥散分布于熔覆层中;熔覆层显微硬度达HV0.1 1000,是碳钢基体的4倍.  相似文献   

16.
在Ti6Al4V合金表面预置Ti和Cr3C2混合粉末,采用横流CO2激光进行熔覆试验,制备出了原位自生的TiC颗粒增强的钛基复合涂层.利用SEM、XRD等手段对激光熔覆层的组织、成分、物相进行了分析,测试了激光熔覆层的显微硬度.结果表明,熔覆层不同位置,组织形态不同,TiC在熔覆层表层以树枝晶形态存在,而在熔覆层底部为近球状颗粒.熔覆层与基材之间形成良好的冶金结合.熔覆层显微硬度在600~800 HV0.5之间,约为基材硬度的2~3倍.  相似文献   

17.
激光原位合成TiB2-TiC颗粒增强铁基涂层   总被引:2,自引:0,他引:2       下载免费PDF全文
采用B4C,TiO2,石墨以及铁基粉末为激光熔覆材料,利用激光多道搭接熔覆技术在碳钢基体上制备TiB2-TiC颗粒增强铁基复合涂层.利用XRD,SEM对涂层的相结构和显微组织进行了研究.采用显微硬度计和滑动磨损试验机分别测试了涂层的硬度和耐磨性能.结果表明,激光熔覆过程B4C,TiO2和石墨反应生成了TiB2和TiC颗粒,并均匀分布在基体中.随着激光功率密度增加,涂层中TiC含量减少,甚至出现FeB脆性相.TiB2-TiC颗粒增强的涂层其硬度和耐磨性能优于基材45钢.  相似文献   

18.
以Ti粉、C粉、WC和Ni60A粉末为原料,利用氩弧熔覆技术在Q235钢基材表面成功制备出Ni基增强相复合涂层,应用OM,SEM,XRD对复合涂层的显微组织和物相进行了分析.结果表明,复合涂层物相由TiC和(Ti,W)C颗粒,γ-Ni奥氏体枝晶和枝晶间的M23C6共晶组织组成,TiC颗粒相细小弥散的分布在基体上,颗粒尺寸大约1.5μm.显微硬度和耐磨性测试结果表明,涂层的显微硬度较基体Q235钢提高4倍以上;常温干滑动磨损条件下,复合涂层具有优异的耐磨性.  相似文献   

19.
采用钛铁、钼铁和石墨为激光熔覆粉末,利用激光多道搭接熔覆技术在碳钢基体上制备Fe-Ti-Mo-C复合涂层.利用X射线衍射仪、场发射扫描电镜、电子探针对涂层的相结构和显微组织进行了研究.用显微硬度计和滑动磨损试验机,对涂层的硬度和耐磨性能进行测试.结果表明,涂层中原位生成了(Ti,Mo)C复合碳化物.(Ti,Mo)C呈面心立方结构,晶格常数略小于TiC晶粒.随着原材料中钼铁加入量的增加,涂层显微组织由铁素体、珠光体向马氏体转变,显微硬度和耐磨性增加,但抗裂性能降低.  相似文献   

20.
通过氩弧熔覆技术在纯铜表面制备TiB2增强 Ni 基复合涂层,以改善其耐磨性能. 将钛粉、硼粉和镍粉在球磨机中充分混合,采用氩弧熔覆技术将纯铜表面预置粉末熔化制备出陶瓷颗粒增强镍基熔覆层. 采用X射线衍射仪、扫描电子显微镜、透射电子显微镜分析涂层的物相及涂层中陶瓷颗粒相的组成、分布及结构,利用显微硬度仪和摩擦磨损试验机测试涂层的显微硬度和耐磨性能. 结果表明,熔覆层物相主要包括γ(Ni, Cu)和TiB2;陶瓷颗粒增强相弥散分布于熔覆层中,其中颗粒相TiB2以六边形存在,熔覆层内部与基体界面处均无缺陷产生;熔覆涂层具有较高的显微硬度,当(Ti+B)质量分数为10%时,涂层显微硬度高达781.3 HV,与纯铜基体对比,熔覆层显微硬度提高约11.7倍;在相同磨损条件下,随(Ti+B)质量分数的增加,熔覆涂层的摩擦系数及磨损失重先减小后增大;氩弧熔覆原位自生TiB2陶瓷颗粒增强镍基熔覆层可显著提高纯铜表面的耐磨性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号