首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2017,43(13):9960-9967
P2-type layered Na2/3Ni1/4Mn3/4O2 has been synthesized by a solid-state method and its electrochemical behavior has been investigated as a potential cathode material in aqueous hybrid sodium/lithium ion electrolyte by adopting activated carbon as the counter electrode. The results indicate that the Na+/Li+ ratio in aqueous electrolyte has a strong influence on the capacity and cyclic stability of the Na2/3Ni1/4Mn3/4O2 electrode. Increase on the Li+ content leads to a shift of the redox potential towards a high value, which is favorable for the improvement of the working voltage of the layered material as cathode. It is found that the coexistence of Na+ and Li+ in aqueous electrolyte can improve the cyclic stability for the Na2/3Ni1/4Mn3/4O2 electrode. A reversible capacity of 54 mAh g−1 was obtained with a high cyclability as the Na+/Li+ ratio was 2:2. Furthermore, an aqueous hybrid ion cell was assembled with the as-proposed Na2/3Ni1/4Mn3/4O2 as cathode and NaTi2(PO4)3/graphite synthesized in this work as anode in 1 M Na2SO4/Li2SO4 (mole ratio as 2:2) mixed electrolyte. The cell shows an average discharge voltage at 1.2 V, delivering an energy density of 36 Wh kg−1 at a power density of 16 W kg−1 based on the total mass of the active materials.  相似文献   

2.
Mn3O4 nanoparticles (NPs) are decorated with reduced graphene oxide nanosheets (rGO-Mn3O4) through a facile and eco-friendly hydrothermal method. The as-synthesized composite was characterized by XRD, SEM, TEM and Raman spectroscopy. The electrochemical properties of (rGO-Mn3O4) nanocomposite were studied as electrode materials for supercapacitors. The rGO-Mn3O4 nanocomposite exhibit high specific capacitance of 457 Fg?1 at 1.0 A/g in 1 M Na2SO4 aqueous electrolyte. The rGO-Mn3O4 exhibits good capacitance retention by achieving 91.6% of its initial capacitance after 5000 cycles. The excellent electrochemical performance is attributed to the increased electrode conductivity in the presence of graphene network.  相似文献   

3.
A by-product free strategy based on modified Hummers method was proposed to synthesize graphene/Mn3O4 composites without any additional manganese source. Coal-derived graphite (CDG) was used as carbon source instead of conventional natural graphite flakes and MnSO4 produced from the modified Hummers was in situ transformed into Mn3O4 by precipitation in air. After reduction with hydrazine, the reduced coal-derived graphene oxide/Mn3O4 (RCDGO/Mn3O4) was obtained and employed as the electrode material for the supercapacitors. In addition, K2SO4 produced from the modified Hummers was used as electrolyte, as a result, residual-free was achieved during the whole process, and the atom utilization was calculated as high as about 97%. A maximum specific capacitance of 260 F g1 was achieved for RCDGO/Mn3O4 composite with 86% Mn3O4 in saturated K2SO4 electrolyte solution based on the synergetic effects between coal-derived graphene and attached Mn3O4 nanoparticles. Its specific energy density reached 8.7 Wh kg1 at a current density of 50 mA g1 when used as a symmetrical supercapacitor. The good capacitance retention (92–94%) was also observed after 1000 continuous cycles of galvanostatic charge–discharge.  相似文献   

4.
Hybrid films of polyaniline (PANI) and manganese oxide (MnOx) were obtained through potentiodynamic deposition from solutions of aniline and MnSO4 at pH 5.6. The hybrid films demonstrated characteristic redox behaviors of PANI in acidic aqueous solution. Characterization of the hybrid films by XRD indicated the amorphous nature of MnOx in the films in which manganese existed in oxidation states of +2, +3 and +4, based on XPS measurement. Hybrid film of PANI and MnOx, PM120 obtained from the solution of 0.1 M aniline and 120 mM Mn2+ displayed a well opened nanofibrous structure which showed an 44% increase in specific capacitance from that of PANI (408 F g?1) to 588 F g?1, measured at 1.0 mA cm?2 in 1 M NaNO3 (pH 1). The hybrid film kept more than 90% of its capacitance after 1000 charging-discharging cycles, with a coulombic efficiency of 98%. The specific capacitance of a symmetric capacitor using PM120 as the electrodes is 112 F g?1.  相似文献   

5.
Composite films consisting of polypyrrole (PPy) and graphene oxide (GO) were electrochemically synthesized by electrooxidation of 0.1 M pyrrole in aqueous solution containing appropriate amounts of GO. Simultaneous chronoamperometric growth profiles and frequency changes on a quartz crystal microbalance showed that the anionic GO was incorporated in the growing GO/PPy composite to maintain its electrical neutrality. Subsequently, the GO was reduced electrochemically to form a reduced GO/PPy (RGO/PPy) composite by cyclic voltammetry. Specific capacitances estimated from galvanostatic discharge curves in 1 M H2SO4 at a current density of 1 A g?1 indicated that values for the RGO/PPy composite were larger than those of a pristine PPy film and the GO/PPy composite. In the case of 6 mg mL?1 GO for the preparation of GO/PPy, a high specific capacitance of 424 F g?1 obtained at the electrochemically prepared RGO/PPy composite indicated its potential for use as an electrode material for supercapacitors.  相似文献   

6.
A sol-gel method with ethylene diamine tetraacetic acid and citric acid as co-chelates is employed for the synthesis of P2-type Na2/3Mn1/2Fe1/4Co1/4O2 as cathode material for sodium-ion batteries. Among the various calcination temperatures, the Na2/3Mn1/2Fe1/4Co1/4O2 with a pure P2-type phase calcined at 900 °C demonstrates the best cycle capacity, with a first discharge capacity of 157 mA h g?1 and a capacity retention of 91 mA h g?1 after 100 cycles. For comparison, the classic P2-type Na2/3Mn1/2Fe1/2O2 cathode prepared under the same conditions shows a comparable first discharge capacity of 150 mA h g?1 but poorer cycling stability, with a capacity retention of only 42 mA h g?1 after 100 cycles. Based on X-ray photoelectron spectroscopy, the introduction of cobalt together with sol-gel synthesis solves the severe capacity decay problem of P2-type Na2/3Mn1/2Fe1/2O2 by reducing the content of Mn and slowing down the loss of Mn on the surface of the Na2/3Mn1/2Fe1/4Co1/4O2, as well as by improving the activity of Fe3+ and the stability of Fe4+ in the electrode. This research is the first to demonstrate the origin of the excellent cycle stability of Na2/3Mn1/2Fe1/4Co1/4O2, which may provide a new strategy for the development of electrode materials for use in sodium-ion batteries.  相似文献   

7.
The well-aligned carbon nanotube arrays (ACNTs) were used as supporting material and the γ-MnO2/ACNT electrode with high dispersion of γ-MnO2 has been prepared by electrochemically induced deposition method. The crystal structure and morphology of the γ-MnO2/ACNT electrode were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The capacitive properties of γ-MnO2/ACNT electrode were characterized by cyclic voltammetry and galvanostatic charge–discharge method. The specific capacitance of the γ-MnO2/ACNT electrode is as high as 784 F g 1 based on γ-MnO2 and 234 F g 1 based on γ-MnO2/ACNT composites in 0.1 M Na2SO4 aqueous solution from 0 to 1 V when the charge–discharge current density is 1 mA cm 2. Additionally, the electrode shows excellent power characteristics, high electrochemical reversibility and excellent long-term charge–discharge cycle stability.  相似文献   

8.
《Ceramics International》2016,42(13):14963-14969
Nanostructured spinel NiMn2O4 arrays have been fabricated by a facile hydrothermal approach and further investigated as binder-free electrode for high-performance supercapacitors. Compared with Mn3O4, NiMn2O4 exhibited higher specific capacitances (662.5 F g−1 and 370.5 F g−1 in different electrolytes at the current density of 1 A g−1) and excellent cycling stability (~96% capacitance retention after 1000 cycles) in a three-electrode system. Such a novel microstructure grown directly on the conductive substrate provided sufficient active sites for redox reaction resulting in their enhanced electrochemical behaviors. Their improved performances suggested that ultrathin sheet-like NiMn2O4 arrays on Ni foam substrate were a promising electrode material for supercapacitors.  相似文献   

9.
A new Mn12 complex was synthesized using ligand substitution reaction of Mn12–OAc with 4-(thiophen-3-yl)benzoic acid and complex’s structural and magnetic properties were analysed. [Mn12O12(O2CC6H4C4H3S)16(H2O)3]·14CH2Cl2 (1) crystallized in the P21/c space group. Intermolecular π–π interactions between phenyl and thiophene rings of two adjacent Mn12 molecules result in one-dimensional supramolecular assembly of 1 in the crystal. On the other hand, steric repulsion between the neighbouring molecules causes unusual ligand arrangement and coordination geometry of Mn(III) ion with five coordination. The ac magnetic study of 1 gives Ueff = 69.98 K and 1/τ0 = 1.456 × 108 s?1 and dc reduced magnetization measurement gives S = 10, g = 1.95 and D = ?0.425 cm?1 showing that outer ligand distortion has little effect on the magnetic properties.  相似文献   

10.
《Ceramics International》2017,43(11):8440-8448
MnO2 nanoflower is prepared by electrochemical conversion of Mn3O4 obtained by heat treatment of spent zinc‒carbon batteries cathode powder. The heat treated and converted powders were characterized by TGA, XRD, FTIR, FESEM and TEM techniques. XRD analyses show formation of Mn3O4 and MnO2 phases for the heat treated and converted powders, respectively. FESEM images indicate the formation of porous nanoflower structure of MnO2, while, condensed aggregated particles are obtained for Mn3O4. The energy band gap of MnO2 is obtained from UV‒Vis spectra to be 2.4 eV. The electrochemical properties are investigated using cyclic voltammetry, galvanostatic charge‒discharge and electrochemical impedance techniques using three-electrode system. The specific capacitance of MnO2 nanoflower (309 F g−1 at 0.1 A g−1) is around six times higher than those obtained from the heat treated one (54 F g−1 at 0.1 A g−1). Moreover, it has high capacitance retention up to 93% over 1650 cycles. Impedance spectra of MnO2 nanoflower show very small resistances and high electrochemical active surface area (340 m2 g−1). The present work demonstrates a novel electrochemical approach to recycle spent zinc-carbon batteries into high value supercapacitor electrode.  相似文献   

11.
《Ceramics International》2017,43(5):4655-4662
Mn3O4/N-doped graphene (Mn3O4/NG) hybrids were synthesized by a simple one-pot hydrothermal process. The scanning electron microscopy (SEM), transition electron microscopy (TEM), X-ray powder diffraction (XRD), Thermogravimetric analysis (TG), Raman Spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize the microstructure, crystallinity and compositions. It is demonstrated that Mn3O4 nanoparticles are high-dispersely anchored onto the individual graphene nanosheets, and also found that, in contrast with pure Mn3O4 obtained without graphene added, the introduction of graphene effectively restricts the growth of Mn3O4 nanoparticles. Simultaneously, the anchored well-dispersed Mn3O4 nanoparticles also play a role as spacers in preventing the restacking of graphene sheets and producing abundant nanoscale porous channels. Hence, it is well anticipated that the accessibility and reactivity of electrolyte molecules with Mn3O4/NG electrode are highly improved during the electrochemical process. As the anode material for lithium ion batteries, the Mn3O4/NG hybrid electrode displays an outstanding reversible capacity of 1208.4 mAh g−1 after 150 cycles at a current density of 88 mA g−1, even still retained 284 mAh g−1 at a high current density of 4400 mA g−1 after 10 cycles, indicating the superior capacity retention, which is better than those of bare Mn3O4, and most other Mn3O4/C hybrids in reported literatures. Finally, the superior performance can be ascribed to the uniformly distribution of ultrafine Mn3O4 nanoparticles, successful nitrogen doping of graphene and favorable structures of the composites.  相似文献   

12.
Mn2+-doped Sn1−xMnxP2O7 (x = 0–0.2) are synthesized by a new co-precipitation method using tin(II)oxalate as tin(IV) precursor, which gives pure tin pyrophosphate at 300 °C, as all the reaction by-products are vaporizable at <150 °C. The dopant Mn2+ acts as a sintering aid and leads to dense Sn1−xMnxP2O7 samples on sintering at 1100 °C. Though conductivity of Sn1−xMnxP2O7 samples in the ambient atmosphere is 10−9–10−6 S cm−1 in 300–550 °C range, it increases significantly in humidified (water vapor pressure, pH2O = 0.12 atm) atmosphere and reaches >10−3 S cm−1 in 100–200 °C range. The maximum conductivity is shown by Sn0.88Mn0.12P2O7 with 9.79 × 10−6 S cm−1 at 550 °C in ambient air and 2.29 × 10−3 S cm−1 at 190 °C in humidified air. It is observed that the humidification of Sn1−xMnxP2O7 samples is a slow process and its rate increases at higher temperature. The stability of Sn1−xMnxP2O7 samples is analyzed.  相似文献   

13.
A comparison between theoretically calculated unit cell volume and interatomic distances in the system La0.7Sr0.3Mn1−xMexO3+δ (where Me = Cu, Fe, Cr, Ti) and the experimental data obtained by the full-profile Rietveld X-ray analysis as well as an analysis of magnetic properties allowed us to suggest possible mechanisms of charge compensation occurring when d metals substitute for manganese. It has been shown that in the case when copper, iron, chromium and titanium ions substitute for manganese ions in the system La0.7Sr0.3Mn1−xMexO3 charge compensation is described by the model 2Mn3+  Mn4+ + Cu2+, Mn3+  Fe3+, Mn3+  Cr3+ and Mn4+  Ti4+, respectively. In the latter case, a decrease in oxygen nonstoichiometry occurs with increasing x.  相似文献   

14.
《Ceramics International》2017,43(14):10905-10912
Herein, a MnFe2O4/graphene (MnFe2O4/G) nanocomposite has been synthesized via a facile N2H4·H2O-induced hydrothermal method. During the synthesis, N2H4·H2O is employed to not only reduce graphene oxide to graphene, but also prevent the oxidation of Mn2+ in alkaline aqueous solution, thus ensuring the formation of MnFe2O4/G. Moreover, MnFe2O4 nanoparticles (5–20 nm) are uniformly anchored on graphene. MnFe2O4/G electrode delivers a large reversible capacity of 768 mA h g−1 at 1 A g−1 after 200 cycles and high rate capability of 517 mA h g−1 at 5 A g−1. MnFe2O4/G holds great promise as anode material in practical applications due to the outstanding electrochemical performance combined with the facile synthesis strategy.  相似文献   

15.
《Ceramics International》2016,42(9):10719-10725
Hierarchical Co3O4@CoWO4/rGO core/shell nanoneedles arrays are successfully grown on 3D nickel foam using a simple, effective method. By virtue of its unique structure, Co3O4@CoWO4/rGO demonstrates an enhanced specific capacitance of 386 F g−1 at 0.5 A g−1 current density. It can be used as an integrated, additive-free electrode for supercapacitors that boasts excellent performance. As illustration, we assemble an asymmetric supercapacitor (ASC) using the as-prepared Co3O4@CoWO4/rGO as the positive electrode and activated carbon as the negative electrode. The optimized ASC displays a maximum energy density of 19.99 Wh kg−1 at a power density of 321 W kg−1. Furthermore, the ASC also presents a remarkably long cycle life along with 88.8% specific capacitance retention after 5000 cycles.  相似文献   

16.
New high temperature negative temperature coefficient (NTC) thermistor ceramics based on a xMgAl2O4–(1  x)YCr0.5Mn0.5O3 (x = 0.1, 0.4, 0.6) composite system have been successfully fabricated through spark plasma sintering (SPS) with a low sintering temperature and a short sintering period. The X-ray diffraction analysis indicates that the SPS-sintered composite ceramics consist of a cubic spinel MgAl2O4 phase and an orthorhombic perovskite YCr0.5Mn0.5O3 phase isomorphic to YCrO3. The SPS-sintered composite ceramics have high relative density ranging from 94.1 to 97.4% of the theoretical density. X-ray photoelectron spectroscopy analysis corroborates the presence of Cr3+, Cr4+, Mn3+, and Mn4+ ions on lattice sites, which may result in the hopping conduction. The obtained ρ25, B25–150, and B700–1000 of the SPS-sintered composite NTC thermistors are in the range of 1.53 × 106–9.92 × 109 Ω cm, 3380–5172 K, and 7239–9543 K, respectively. These values can be tuned by adjusting the MgAl2O4 concentration.  相似文献   

17.
The effect of MnCO3 doped from 0 to 55 mol% into BaO–(Nd0.7Sm0.3)2O3–4TiO2 (BNST) sintered in a reducing atmosphere on the microstructure and electrical properties was studied. Mn3+ completely substituted into Ti4+-sites of BNST to form a solid solution, so there is no second phase until 42 mol% which is the maximum solubility. Mn (<42 mol%)-doped BNST sintered in a reducing atmosphere is in a semi-conducing state because the concentration of free electron is higher than that of the acceptors. On the other hand, when Mn content doped into BNST exceeds a critical value (>43 mol%), the second Mn-rich phase due to excess of Mn3+ substituted into Ti4+-site, corresponding to original BaO–(Nd0.7Sm0.3)2O3–4TiO2 (1 1 4) phase, is formed. Mn (>43 mol%)-doped BNST sintered in a reducing atmosphere is in an insulating state because the concentration of the acceptors is higher than that of liberated free electron, so the insulation resistance becomes high and tan δ becomes low. The formation of the second Mn-rich phase affects Q × f factor and temperature coefficient of capacitance (T.C.C.) of BNST significantly.  相似文献   

18.
This paper describes catalytic investigations into soot oxidation over KOH, K2CO3, KNO3, CH3COOK and K2SO4 doped iron and manganese spinels. For Fe3O4 it was found that alkali doping (0.5 monolayer) is confined to the surface and results in the substantial enhancement of its catalytic activity (ΔT50%  80 °C for K2CO3), depending on the precursor nature. For Mn3O4 K-doping at low loading (0.5 ML) has a negative effect, whereas at high loading (9 ML) leads to the formation of a birnessite shell on the Mn3O4 core catalyst with a spectacular increase of the soot oxidation rate (ΔT50%  150 °C).  相似文献   

19.
《Ceramics International》2017,43(2):1968-1974
3D network-like porous MnCo2O4 nanostructures have been successfully fabricated through a facile and scalable sucrose-assisted combustion route followed by calcination treatment. Benefiting from its advantages of the unique 3D network-like architectures with large specific surface area (216.15 m2 g−1), abundant mesoporosity (2–50 nm) and high electronic conductivity, the as-prepared MnCo2O4 electrode displays a high specific capacitance of 647.42 F g−1 at a current density of 1 A g−1, remarkable capacitance retention rate of 70.67% at current density of 10 A g−1 compared with 1 A g−1, and excellent cycle stability (only 6.32% loss after 3000 cycles). The excellent electrochemical performances coupled with facile and cost effective method will render the as-fabricated 3D network-like porous MnCo2O4 as a promising electrode material for supercapacitors.  相似文献   

20.
《Ceramics International》2016,42(5):5693-5698
The spinel LiZnxMn2−xO4 (x≤0.10) cathode materials have been synthesized by solution combustion method at 600 °C for 3 h. The structure and the morphology of LiZnxMn2−xO4 were characterized by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM), respectively. All the obtained samples were identified as the spinel structure of LiMn2O4, the lattice parameters of samples decreased and the particle size increased as the Zn content increased. The effects of Zn-doping on the electrochemical characteristics of LiMn2O4 were investigated by galvanostatic charge–discharge experiments, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Among them, LiZn0.05Mn1.95O4 particles presented outstanding cycling stability with a capacity retention of 82.9% at a discharge rate of 1 C (1 C=148 mA h g−1) after 500 cycles. Spinel LiZn0.05Mn1.95O4 had reversible cycling performance, revealing that doping LiMn2O4 with Zn improves its electrochemical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号