共查询到19条相似文献,搜索用时 93 毫秒
1.
PM_(2.5)要素对空气质量影响较大。PM_(2.5)浓度变化是多种因素作用的结果,且过程突发、非线性,具有明显的不确定性,难以使用传统的方法进行预测。针对该问题,以气象、大气污染物因素作为PM_(2.5)预测指标,提出基于LSTM循环神经网络的PM_(2.5)预测模型。使用灰色关联度分析方法对多个气象、大气污染指标进行关联强度分析;对数据进行平滑处理,将时间序列问题处理为监督问题;搭建多变量的LSTM循环神经网络PM_(2.5)预测模型,实现PM_(2.5)日值浓度的准确预测。使用北京市2010年-2017年气象数据和大气污染物数据进行仿真实验,结果表明该模型能够较好地预测PM_(2.5)的日值变化趋势。 相似文献
2.
PM2.5也称作可入颗粒物。是指大气中直径小于等于2.5微米的颗粒物。虽然PM2.5在地球大气成分中含量很少,但它对空气质量和能见度等有重要的影响,且对人体健康影响很大。该研究以北京市机动车保有量、煤炭消耗量和年扬尘天数2000-2013年的统计数据为基础,建立BP神经网络模型进行预测研究,结果表明:2014年PM2.5年均值为90.83μg/m3,三因素与PM2.5年均值的相关度顺序为:煤炭消耗量〉年扬尘天数〉机动车保有量。 相似文献
3.
5.
在医疗环境中病员在室内停留的时间占全天的80%以上,因此开展室内空气质量的研究对病员康复具有重要意义。现有的PM_(2.5)预测方法主要存在两个问题:样本采集粒度与预测粒度不一致;对室内PM_(2.5)预测的相关特征研究不足。对此提出一种基于多示例遗传神经网络的PM_(2.5)预测方法。利用多示例机制有效解决采样间隔与预测时间的平衡问题,并引入与室内环境质量密切相关的通风率特征。以空气质量敏感的医疗单位中采集的实际数据进行验证。实验结果表明,该方法的相对误差为5.60%,比传统遗传神经网络降低7.55%,比支持向量回归方法降低5.98%,比随机森林方法低8.36%,比线性回归低7.66%,比决策树低14.69%,比LASSO回归低8.21%。 相似文献
6.
由于环境和快速发展之间的不平衡,城市空气质量问题变得越来越突出。PM2.5作为空气污染的主要成分,会对人体造成很大伤害。因此,准确地预测PM2.5浓度对于保护人们健康具有重要意义。首先选取了其他空气质量数据(PM10、NO2、CO2、O3)作为影响因素,构建了基于机器学习(多元线性回归、岭回归、套索回归、决策树、随机森林和人工神经网络)的PM2.5预测模型;其次利用这些模型预测山西省太原市未来1小时PM2.5浓度;最后通过MAE、RMSE、R2来等指标评价各模型的预测性能,实验结果表明,基于随机森林的预测模型具有最高的预测精度。 相似文献
7.
为提高PM2.5长期预测精度,以空气污染物与气象因素作为影响因子,提出一种基于深度学习的TSMN(time series memory network)预测模型.该模型由两个组件构成,本地记忆组件利用外部记忆方式提高模型长程记忆能力,并与多站点空间关系建模的邻域组件协同从时空角度完成PM2.5长期预测.通过使用不同评价指标将TSMN模型与多种模型进行对比,其中与性能较优的CNN-LSTM模型相比,该模型的RMSE、MAE分别下降5.2%、5.7%,R2提升7.5%.实验结果表明TSMN模型能够有效提高PM2.5浓度的长期预测精度. 相似文献
8.
目前多数PM2.5浓度预测模型仅利用单个站点的时间序列数据进行浓度预测, 并没有考虑到空气质量监测站之间的区域关联性, 这会导致预测存在一定的片面性. 本文利用KNN算法选择目标站点所在区域中与其相关的空间因素, 并结合LSTM模型, 提出基于时空特征的KNN-LSTM的PM2.5浓度预测模型. 以哈尔滨市10个空气质量监测站的污染物数据进行仿真实验, 并将KNN-LSTM模型与其他预测模型进行对比, 结果显示: 模型相较于BP神经网络模型平均绝对误差(MAE)、均方根误差(RMSE)分别降低了19.25%、13.23%; 相较于LSTM模型MAE、RMSE分别降低了4.29%、6.99%. 表明本文所提KNN-LSTM模型能有效提高LSTM模型的预测精度. 相似文献
9.
为科学合理地预测大气污染物PM2.5颗粒物浓度变化规律,分析PM2.5颗粒物浓度变化历史数据,综合判断外部条件(温度、风速、天气状况)和内部条件(其它污染物的浓度)对PM2.5颗粒物浓度变化的影响.采用一种改进型PSO优化的模糊神经网络,将粒子群算法与模糊神经网络进行融合,发挥PSO算法全局寻优的特点,预测PM2.5颗粒物浓度的变化规律.对某市2013年PM2.5颗粒物浓度进行预测和验证,验证结果表明,该算法具备良好的预测精度. 相似文献
10.
空气污染不仅危害人类的身心健康,而且还会制约城市的经济发展,其中PM2.5带来的影响尤为突出。为了方便准确地预测出空气中的PM2.5浓度等级,提出了一种基于随机森林的PM2.5浓度等级预测方法,特征因子采用太原市2013年-2017年的气象数据、预测站点的PM2.5浓度变化的时间规律以及与周围站点的时空关联性。该方法首先利用K-Means算法对原始气象数据聚类,降低不同分类器之间的相关性,然后利用欠采样方法对数据进行平衡采样,减少类不平衡对分类器性能的影响,最后利用泛化能力好的随机森林构建预测模型。经过真实数据验证,该方法对PM2.5浓度等级预测具有较好的精确度、召回率与[F]值。 相似文献
11.
基于多元线性回归的雾霾预测方法研究 总被引:1,自引:0,他引:1
提出了一种在线样本更新的多元线性回归分析的雾霾预测方法。首先搜集了北京市天气状况,包括平均气温、湿度、风级等气象数据以及PM2.5、CO、NO2、SO2等大气成分浓度数据,然后通过散点图对这些因素进行主要影响因素分析,筛选出对雾霾影响比较明显的因素作为雾霾预测的依据。通过在线样本更新的多元线性回归建立了PM2.5含量预测模型,并将气象要素作为雾霾的判断标准。最后给出实际例子,利用多元线性回归对北京未来一天、三天及一周的PM2.5含量进行较为精确的预测。 相似文献
12.
随着近年雾霾天气的频繁出现,空气质量开始越来越受到公众关注。PM2.5浓度指数是判断空气质量的重要指标,如何根据历史数据有效地预测空气中PM2.5浓度,具有很高的应用价值。分析以往空气质量数据表明,PM2.5浓度有明显的非线性和不确定性波动,很难用传统机器学习算法有效地预测。本文基于LSTM循环神经网络,依据过去20小时采集的空气数据,预测未来5小时的PM2.5浓度指数。实验结果表明,LSTM可以有效地捕获空气质量的时序特征,较准确预测出未来时刻的PM2.5浓度指数。 相似文献
13.
通过分析期货黑色系品种螺纹钢产业链上下游的关系,提出了一种基于多元线性回归分析的螺纹钢价格分析及预测模型。首先,收集 影响螺纹钢价格的主要因素数据,包括焦炭期货结算价、焦煤期货结算价、铁矿石期货结算价、热卷期货结算价与人民币兑美元汇率中间价;然后,通过散点图与趋势线对这些影响因素进行分析以确定影响因素,借助SPSS与NCSS软件利用收集到的数据构建基于最小二乘法的多元线性回归模型,并通过岭回归分析消除自变量间的共线性,得到修正后的模型;最后,运用此模型对未来一个月交易日的螺纹钢价格进行较为精准的预测。实验表明,该模型拟合度较高,具有一定的实用性。 相似文献
14.
北京地区PM_(2.5)质量浓度分布及其与气象条件影响关系分析 总被引:1,自引:0,他引:1
近些年来,随着城市规模的扩大及工商业的发展,雾霾污染越来越严重。作为产生雾霾天气的主要原因之一,PM_(2.5)受到了空前的关注。在一定条件下,污染物的生成、积累和扩散主要取决于气象条件。因此,本文收集了2009年2月18日至2013年12月31日期间北京市PM_(2.5)质量浓度监测资料和同期气象观测资料,根据PM_(2.5)的实际分布情况,研究了北京市PM_(2.5)污染状况及其与气象条件的相互影响关系,为北京市PM_(2.5)监测和污染防治提供参考。结果表明,北京市PM_(2.5)质量浓度呈现明显的非正态分布,年均污染水平在100μg·m~(-3)左右。风速、相对湿度和日照时数等气象条件对于细颗粒物的污染程度有着较显著的影响。风速低,相对湿度高时,会导致PM_(2.5)的积累,从而降低了日照时数。同时,北京地区特殊的地形使得西北风下颗粒物能够较快扩散。 相似文献
15.
传统的深度置信网络(Deep brief networks,DBN)在建立高维数据分类模型时,往往存在网络负荷大,运算复杂度高等问题.本文首先基于非线性PCA(NPCA)对高维样本数据进行降维,然后以提取到的非线性特征作为DBN的网络输入,构建了一类含非线性特征提取预处理机制的DBN分类器.并从信息熵理论的角度出发,证明了所提改进DBN分类器在网络结构和算法复杂度方面的优势.通过一个PM2.5浓度预测与影响因素诊断实例,验证了所提改进DBN在一类分类和影响因素诊断问题中的应用,并与传统的分类器进行对比,显示了所提方法在建模精度及收敛速度上的优势. 相似文献
16.
当前为了保证污染信号分析的精度,在对PM2.5污染进行检测的过程中,需处理的数据量过大,导致经典神经网络方法遇到矛盾数据时,需要花费大量的数据校验时间,收敛速度下降,检测效率大幅降低,提出一种基于改进神经网络算法的PM2.5污染检测方法,在分析标准神经网络算法的基础上,允许信号跳变精确度范围内,在层与层之间引入容错性变量,同时在计算阈值的过程中融人松弛变量,提高收敛速度;避免神经网络陷入局部最优解;采用改进神经网络算法,通过不断调整网络的权值以及污染阈值,对PM2.5污染信号进行高效检测;以飞利浦公司的新一代检测系统为测试器材,测试结果表明,采用所提方法得到的PM2.5污染检测效率明显提高. 相似文献
17.
为了解决现有P M2.5监测站成本高、监测数据更新时间长、在具体位置处监测值不够精确等问题,设计了一种基于 GPS浮动车法的城市PM2.5监测系统.该系统包括车载PM2.5检测设备和监控中心两部分,车载检测设备的主控芯片为LPC2366.通过将车载PM2.5检测设备装载到城市移动车辆上,收集整个城市的PM2.5数据,生成城市PM2.5的分布图与点聚图,并通过网页的形式进行发布.该系统大大降低了P M2.5监测成本,增强了监测实时性,提高了监测的效率. 相似文献
18.
空气细颗粒物健康暴露风险等研究需要准确的PM_(2.5)浓度时空分布信息作为健康评估的重要输入。然而,由于监测台站稀疏分布,通常需要融合遥感等辅助信息,通过空间制图模型得到PM_(2.5)浓度的分布状况。如何在估计模型中将PM_(2.5)浓度的空间分布特征融入制图模型将是提高PM_(2.5)制图精度的关键。发展了一种融合地理加权回归和克里金插值方法的混合模型:地理加权回归克里金(Geographically Weighted Regression-Kriging,GWRK),地理加权回归模型考虑PM_(2.5)浓度分布的空间异质性,克里金模型对回归后的残差中存在的空间自相关性进行建模。基于该方法,利用中国空气质量监测站数据,采用遥感、模式模拟数据作为辅助信息,对2017年中国逐月的PM_(2.5)浓度分布进行估计空间制图。交叉验证结果表明,GWRK相较于传统制图方法(最小二乘回归、地理加权回归、回归克里金)具有更高的精度,决定系数R2为0.824,平均绝对误差为6.96μg/m3,均方根误差为10.94μg/m3。2017年逐月的PM_(2.5)浓度制图结果显示,在时间上,冬季是PM_(2.5)污染最严重的时段,夏季最轻,空间上,东部经济较为发达的城市如长三角地区是污染严重区,西南地区污染程度较轻。 相似文献
19.
基于梯度提升回归模型的生猪价格预测 总被引:1,自引:0,他引:1
研究生猪价格的准确预测问题,传统预测模型存在速度慢、陷入局部极小值、核函数的选择等问题,预测效果不佳。为此,首先筛选出生猪价格的显著因素,接着利用Python数据分析分别建立贝叶斯岭回归、普通线性回归、弹性网络和支持向量机模型,将这4个回归模型作为梯度提升回归模型的训练集,对生猪价格进行预测。结果表明,综合集成的梯度提升回归模型的均方差(MSE)为0.056,平均绝对误差(MAE)为0.18,判定系数为0.994,比前面单一模型预测效果好。最后,利用梯度提升回归模型对2017年2月至2017年11月的生猪价格预测,发现输出的预测值与真实值比较接近,最大相对误差为3.495%,梯度提升回归模型具有较高的预测精度。 相似文献